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Motivation: Case of a quantum dot

• Quantum dot Hamiltonian:

H = H0 +H1 =
∑
α

εαc
+
α cα +

∑
αβγδ

V αβ
γδ c

+
γ c

+
δ cβcα

• Structure of perturbation theory reminds a Cayley tree (B
Altshuler et al 1996):

Υα = c+αψGS : one particle in the state α - first generation
Υαβ
γ = c+α c

+
β cγψGS : two particles and one hole - second

generation etc
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Anderson localization on a Cayley tree

• Metal-insulator transition is well established for Anderson
model (R Abou-Chacra, P Anderson, D Thouless 1973)

• Various sigma-models (N � 1-orbital Anderson model)
provide symmetry-breaking picture of AL (M Zirnbauer
1986, K Efetov 1987)

• Original Anderson model in supersymmetric treatment (A
Mirlin, Y Fyodorov 1991)
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Anderson Localization on a Cayley Tree: physical quantities

• Position of the mobility edge (R Abou-Chacra et al 1973)

• IPR in the localized phase (M Zirnbauer 1985)
• Density-density correlations (K Efetov 1987, A Mirlin Y

Fyodorov 1991)
• Distribution function of LDOS (A Mirlin, Y Fyodorov 1994)
• Statistics of root-leaf transmission coefficients: numerics

(C Monthus, T Garel 2009)
• Statistics of wave function at root: this work
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Sparse Random Matrix and Random Regular Graph ensembles

• Sparse random matrix ensemble (Y Fyodorov, A Mirlin
1991): N →∞ and finite mean number of elements per
row p:

P(Hij) = (1− p

N
)δ(Hij) +

p

N
h(Hij)

• Random Regular Graph ensemble
1 Generate random graph G with given number of nodes N

and constant connectivity K.
2 Build adjacency matrix A of G - sparse matrix of 0 and 1

with KN non-zero elements (out of N2).
3 Add diagonal disorder: H = A+ diag(w1, w2, ..., wn) with
wi ∼Wunif(−0.5, 0.5)
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Random Regular Graphs: almost loop-less

• RRG with N vertices has small diameter d ∝ logN and
with high probability, the length of the shortest loop passing
through a given vertex is l ∝ logN . As a result, RRG is
locally tree-like

• Distance-preserving (approx.) embedding of RRG in 2D:
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Anderson localization on a Random Regular Graph: physical
quantities

• Spectral statistics: the joint distribution of {En} (Y
Fyodorov, A Mirlin 1991)

• Statistics of normalized eigenvectors ψn (Y Fyodorov, A
Mirlin 1991)

• Recent numerical studies of spectral and WF statistics (G
Biroli et al 2012, A De Luca et al 2014, K Tikhonov et al
2016 etc)
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Wavefunctions on a Random Regular Graph: Weak and strong
disorder limits

Typical wavefunction and PDF of the nearest level spacings:

• Weak disorder W = 5�Wc:

• Strong disorder W = 25�Wc:
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IPR and ergodicity. Inside the delocalized phase: W = 5, W = 10

• Typical WF in the delocalized phase: evolution with
disorder:

W = 5 W = 10

• Inverse Participation Ratio (IPR): I2 = N
〈
|ψ|4

〉
. For

uniform spreading of the WF: I2(N →∞) = C/N with C
independent on the system size.
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Anderson localization on a Random Regular Graphs: summary of
theoretical results

Theory predicts only one phase transition, at which,
simultaneously:

• Delocalization transition happens: ψ becomes delocalized
over macroscopic number of sites.

• Spectral statistics turns to Wigner-Dyson: level repulsion
establishes.

• Eigenfunctions become ergodic, being spread uniformly all
over the system.
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Anderson localization on a Random Regular Graphs: Recent
numerical studies

• Exact diagonalization on RRG (m = 2) with diagonal
disorder: G Biroli et al (2012, unpublished), A. De Luca et
al (2014)

• Main claim: existence of delocalized non-ergodic phase on
the RRG, characterized by fractal behaviour of
wavefunctions at the delocalized side, i. e.:

I2(N →∞) = CN−α

with α < 1 in the thermodynamic limit of N →∞.
• Contradicts existing analytical results and of (potentially)

high impact.
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Anderson localization on a Random Regular Graphs: Recent
numerical studies

• Interpretation of numerics is a very delicate issue in the
absence of analytical results for finite-N corrections.

• Crossing points put forward to advocate for existence of
non-ergodic phases.

G. Biroli et al A. De Luca et al
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Interpretation of finite-size behaviour of IPR: running critical
exponents I2 ∼ N−α

• Define pseudo-fractal exponent α as:

α = −∂ log I2
∂ logN

.

• 1 Localized phase: α(N →∞) = 0
2 Ergodic phase: α(N →∞) = 1

• Expectation on RRG: Delocalized ≡ Ergodic
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Interpretation of finite-size behaviour of IPR: running critical
exponents I2 ∼ N−α

• Exact diagonalization with size up to N = 262K:

7 8 9 10 11 12
ln N0

1
α

α(lnN) for W = 5, 8, 10, 11, 14.

• Non-monotonous behaviour of α(lnN) with minimum at
Nmin(W ).
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Interpretation of finite-size behaviour of IPR: spectral statistics

• Mean adjacent gap ratio: r = 〈δi+1/δi〉 as a function W for
various N :

• Apparent crossing point W∗(N) drifts logarithmically
(alternatively: N∗(W )).
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Critical length on the disordered RRG

• The crossover should happen at

N ∼ Nc ∝ exp
[
(W −Wc)

−1/2
]

• As extracted from r(lnN) and α(lnN):

1.8

2.5

0.2 1.0

K. Tikhonov AL on RRG and CT 16/34



Introduction
Main Part

Conclusion

Critical length on the disordered RRG

• The crossover should happen at

N ∼ Nc ∝ exp
[
(W −Wc)

−1/2
]

• As extracted from r(lnN) and α(lnN):

1.8

2.5

0.2 1.0

K. Tikhonov AL on RRG and CT 16/34



Introduction
Main Part

Conclusion

Random Regular Graph vs Cayley Tree

• Critical point: N →∞: W (c)
RRG ≡W

(c)
CT

• What can we say about finite-size behaviour? Compare
statistics of ψ4 at root of CT (n generations) and

〈
ψ4
〉

at
RRG of the same size.
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Random Regular Graph vs Cayley Tree

• Statistics of wavefunctions

8 10 12
n

ln(N2<ψr
4>)

W = 5

8 10 12
n

ln(N2<ψr
4>)

W = 14

• In terms of (pseudo)-fractal exponent α:

7 8 9 10 11 12 ln N0

1
α
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Wavefunction statistics at finite-size CT

• For disordered electronic systems:

|ψ(r)|2 =
1

4πνV
lim
η→0

η−1 〈GR(r, r)GA(r, r))〉

•

|ψ(r)|2 = − 1

2πνηV
lim
η→0

∫
Q11(r)Q22(r)e

−S(Q)dQ

In the limit of η → 0 only the dependence on 1 . λ1 <∞
persists:

P (Q)→ P (ηλ1).

• Explicit expressions for the integral kernels a cumbersome
for realistic model, let us start with a toy example.

K. Tikhonov AL on RRG and CT 19/34
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Simple example: Vector O(n,1) sigma-model on a CT

• Minimal model to study localization transition. Introduced
as a toy model by Zirnbauer 1990. Later studied by I
Gruzberg and A Mirlin 1996:

H = J
∑
ij

~ni · ~nj + η
∑
i

σi

with ~n = (σ, ~π) for n+ 1 - component vector constrained by
~n2 = σ2 − ~π2 = 1 and η for symmetry-breaking field.

• Shows phase transition at J = Jc for 0 ≤ n < 1. We will be
interested in n = 0. For m = 2: Jc ≈ 0.026.

• Statistical interpretation: vertex-reinforced jump process
(VRJP) on a tree.

K. Tikhonov AL on RRG and CT 20/34
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Vector O(n, 1) sigma-model: N →∞ phase transition

• At N →∞ distribution function of an order parameter P (~n)
satisfies the integral equation:

P (~n) =

∫
d~n′L(~n, ~n′)D(~n′)Pm(~n′)

with L(~n, ~n′) = e−J~n·~n
′

and D(~n) = e−ησ.
• Does the order parameter P (θ) depend on η in the limit of
η → 0? The answer depends on J :

1/η
cosh(θ)0

1
P(θ)

J<Jc
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Vector O(n, 1) sigma-model: finite N , η → 0.

• The symmetry breaking factor D(~n) is significant for
θ ∼ ln 1/η. Introduce t = ln (η cosh θ) and consider η → 0.

• Integration out of the nodes layer by layer
(n = 1, 2, ..., lnN/ lnm):

Pn+1(t) =

∫
L(t− t′)e−et

′
Pmn (t′)dt′

with L(t) = 1
2K1/2(J)

et/2−J cosh t.
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Tail analysis

• Iterations produce a drifting kink:
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Tail analysis: cont.

• For t→ −∞, where P = 1 + δP (t):

δPn+1(t) = m

∫
L(t− t′)δPn(t′)dt′

• δP (t) = eλt are eigenfunctions of L̂ with spectrum ελ

0 1
2 1

λ0

0.5

1
ϵλ

• In the ordered phase: mελ > 1, there is no solution for
asymptotic self-consistent equation.

K. Tikhonov AL on RRG and CT 24/34



Introduction
Main Part

Conclusion

Tail analysis: cont.

• For t→ −∞, where P = 1 + δP (t):

δPn+1(t) = m

∫
L(t− t′)δPn(t′)dt′

• δP (t) = eλt are eigenfunctions of L̂ with spectrum ελ

0 1
2 1

λ0

0.5

1
ϵλ

• In the ordered phase: mελ > 1, there is no solution for
asymptotic self-consistent equation.

K. Tikhonov AL on RRG and CT 24/34



Introduction
Main Part

Conclusion

Tail analysis: cont.

• For t→ −∞, where P = 1 + δP (t):

δPn+1(t) = m

∫
L(t− t′)δPn(t′)dt′

• δP (t) = eλt are eigenfunctions of L̂ with spectrum ελ

0 1
2 1

λ0

0.5

1
ϵλ

• In the ordered phase: mελ > 1, there is no solution for
asymptotic self-consistent equation.

K. Tikhonov AL on RRG and CT 24/34



Introduction
Main Part

Conclusion

Tail analysis: cont.

• The drifting kink is formed instead

0.2

0.4

0.6

0.8

1.0

ordered phase

P(t)

• The tail: δPn(t) = −#eλ(t+
n
λ
lnmελ). On the linear level:

1
2 ≤ λ ≤ 1 are possible. Non-linearities dynamically select
λ according to:

lnmελ
λ

→ min

W

λ*
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Wavefunction statistics at finite-size CT

• Analysis is exactly the same with more complicated
kernels.

• Distribution function of u = ψ2
r is expressed in terms of

P (t):
P(u) = N−1∂2uPlnN/ lnm(t)

• Recall the drifting kink equation:

Pn(t) =

{
1−#eλ(t+α lnN), t+ α lnN < 0

0, otherwise

with α = minλ(ελ/λ)
lnm .
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Distribution function of wavefunction u = ψ2
r at the root

• As a result, WF at root is distributed according to:

P(u) =

{
N−1+αλ∗uλ∗−2, uNα . 1

0, otherwise

• Statistics of the WF from the numerics (W=14):

P(lnψ2) lnP(lnψ2)
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Distribution function of wavefunction u = ψ2
r at the root

• For the 2nd moment at root:

N
〈
ψ4
r

〉
= N−α.

Compare with α = 1 for RRG at N →∞.

• More generally, for q ≥ 1/2:〈
ψ2q
r

〉
= N−q+(q−1)(1−α)
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Specific examples: α(J) for some concrete models.

• Exact ελ for SM are provided in the original papers.

• For Anderson model one may use quasi-ACAT
approximation:

ελ ≈
1

λ− 1/2

1

W − 4/W

[
(W/2)2λ−1 − (W/2)−2λ+1

]
• As a result, for m = 2 we obtain (introducing g = W−2 for

the Anderson model):

0 1
gc/g0

0.5

1

α(g)
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Large-m behaviour of Anderson model

• For m� 1 for all considered models α(g) collapse to a
single curve.

• Consider Anderson model as an example:

1
2
ln(m) ln(m)

ln(W)

1

α(W)
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On recent preprint by B Altshuler at al arXive: 1605.02295

• It is admitted that the phase at W < 10 on RRG is ergodic.
• First-order phase transition point (N →∞) at W = 10 is

proposed instead.
Not consistent with exact diagonalization up to 262K for
W = 11.

• Population dynamics: simulates a loop-less graph.
Confirms the fractal statistics of the wavefunction at the
root of a CT.
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Conclusion
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Outlook

• Deviations of the RRG ensemble from RMT at finite N

For spectral properties: F Metz, G Parisi and L Leuzzi 2014

• Implications for Many-Body Localization

For a nice recent discussion of connections of a quantum dot
problem with hopping Hamiltonian on a Bethe lattice see I
Gornyi, A Mirlin and D Polyakov 2016
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