Anderson localization on random regular graphs and Cayley trees (arXiv:1604.05353)

K. Tikhonov ^{1,2} A. Mirlin ^{2,3} M. Skvortsov ^{1,4}

¹Landau Institute for Theoretical Physics

²Institut für Nanotechnologie, Karlsruhe Institute of Technology

³Institut für Theorie der Kondenserten Materie, Karlsruhe Institute of Technology

⁴Skolkovo Institute of Science and Technology

June 28, 2016

Motivation: Case of a quantum dot

Quantum dot Hamiltonian:

$$H = H_0 + H_1 = \sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^+ c_{\alpha} + \sum_{\alpha\beta\gamma\delta} V_{\gamma\delta}^{\alpha\beta} c_{\gamma}^+ c_{\delta}^+ c_{\beta} c_{\alpha}$$

Motivation: Case of a quantum dot

Quantum dot Hamiltonian:

$$H = H_0 + H_1 = \sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^+ c_{\alpha} + \sum_{\alpha\beta\gamma\delta} V_{\gamma\delta}^{\alpha\beta} c_{\gamma}^+ c_{\delta}^+ c_{\beta} c_{\alpha}$$

 Structure of perturbation theory reminds a Cayley tree (B Altshuler et al 1996):

 $\Upsilon^{\alpha} = c^{+}_{\alpha}\psi_{GS}$: one particle in the state α - first generation $\Upsilon^{\alpha\beta}_{\gamma} = c^{+}_{\alpha}c^{+}_{\beta}c_{\gamma}\psi_{GS}$: two particles and one hole - second generation etc

Anderson localization on a Cayley tree

 Metal-insulator transition is well established for Anderson model (R Abou-Chacra, P Anderson, D Thouless 1973)

Anderson localization on a Cayley tree

- Metal-insulator transition is well established for Anderson model (R Abou-Chacra, P Anderson, D Thouless 1973)
- Various sigma-models ($N \gg 1$ -orbital Anderson model) provide symmetry-breaking picture of AL (M Zirnbauer 1986, K Efetov 1987)

Anderson localization on a Cayley tree

AL on RRG and CT 3/34

- Metal-insulator transition is well established for And
 - Metal-insulator transition is well established for Anderson model (R Abou-Chacra, P Anderson, D Thouless 1973)
- Various sigma-models ($N \gg 1$ -orbital Anderson model) provide symmetry-breaking picture of AL (M Zirnbauer 1986, K Efetov 1987)
- Original Anderson model in supersymmetric treatment (A Mirlin, Y Fyodorov 1991)

K. Tikhonov

Anderson Localization on a Cayley Tree: physical quantities

Position of the mobility edge (R Abou-Chacra et al 1973)

- Position of the mobility edge (R Abou-Chacra et al 1973)
- IPR in the localized phase (M Zirnbauer 1985)

- Position of the mobility edge (R Abou-Chacra et al 1973)
- IPR in the localized phase (M Zirnbauer 1985)
- Density-density correlations (K Efetov 1987, A Mirlin Y Fyodorov 1991)

- Position of the mobility edge (R Abou-Chacra et al 1973)
- IPR in the localized phase (M Zirnbauer 1985)
- Density-density correlations (K Efetov 1987, A Mirlin Y Fyodorov 1991)
- Distribution function of LDOS (A Mirlin, Y Fyodorov 1994)

- Position of the mobility edge (R Abou-Chacra et al 1973)
- IPR in the localized phase (M Zirnbauer 1985)
- Density-density correlations (K Efetov 1987, A Mirlin Y Fyodorov 1991)
- Distribution function of LDOS (A Mirlin, Y Fyodorov 1994)
- Statistics of root-leaf transmission coefficients: numerics (C Monthus, T Garel 2009)

- Position of the mobility edge (R Abou-Chacra et al 1973)
- IPR in the localized phase (M Zirnbauer 1985)
- Density-density correlations (K Efetov 1987, A Mirlin Y Fyodorov 1991)
- Distribution function of LDOS (A Mirlin, Y Fyodorov 1994)
- Statistics of root-leaf transmission coefficients: numerics (C Monthus, T Garel 2009)
- Statistics of wave function at root: this work

Sparse Random Matrix and Random Regular Graph ensembles

• Sparse random matrix ensemble (Y Fyodorov, A Mirlin 1991): $N \rightarrow \infty$ and finite mean number of elements per row *p*:

$$\mathcal{P}(H_{ij}) = (1 - \frac{p}{N})\delta(H_{ij}) + \frac{p}{N}h(H_{ij})$$

Sparse Random Matrix and Random Regular Graph ensembles

• Sparse random matrix ensemble (Y Fyodorov, A Mirlin 1991): $N \rightarrow \infty$ and finite mean number of elements per row *p*:

$$\mathcal{P}(H_{ij}) = (1 - \frac{p}{N})\delta(H_{ij}) + \frac{p}{N}h(H_{ij})$$

- Random Regular Graph ensemble
 - Generate random graph G with given number of nodes N and constant connectivity K.
 - 2 Build adjacency matrix A of G sparse matrix of 0 and 1 with KN non-zero elements (out of N^2).
 - 3 Add diagonal disorder: $H = A + \text{diag}(w_1, w_2, ..., w_n)$ with $w_i \sim W \text{unif}(-0.5, 0.5)$

Random Regular Graphs: almost loop-less

• RRG with N vertices has small diameter $d \propto \log N$ and with high probability, the length of the shortest loop passing through a given vertex is $l \propto \log N$. As a result, RRG is locally tree-like

Random Regular Graphs: almost loop-less

- RRG with N vertices has small diameter $d \propto \log N$ and with high probability, the length of the shortest loop passing through a given vertex is $l \propto \log N$. As a result, RRG is locally tree-like
- Distance-preserving (approx.) embedding of RRG in 2D:

Anderson localization on a Random Regular Graph: physical quantities

• Spectral statistics: the joint distribution of $\{E_n\}$ (Y Fyodorov, A Mirlin 1991)

Anderson localization on a Random Regular Graph: physical quantities

- Spectral statistics: the joint distribution of $\{E_n\}$ (Y Fyodorov, A Mirlin 1991)
- Statistics of normalized eigenvectors ψ_n (Y Fyodorov, A Mirlin 1991)

Anderson localization on a Random Regular Graph: physical quantities

- Spectral statistics: the joint distribution of $\{E_n\}$ (Y Fyodorov, A Mirlin 1991)
- Statistics of normalized eigenvectors ψ_n (Y Fyodorov, A Mirlin 1991)
- Recent numerical studies of spectral and WF statistics (G Biroli et al 2012, A De Luca et al 2014, K Tikhonov et al 2016 etc)

Wavefunctions on a Random Regular Graph: Weak and strong disorder limits

Typical wavefunction and PDF of the nearest level spacings:

Wavefunctions on a Random Regular Graph: Weak and strong disorder limits

Typical wavefunction and PDF of the nearest level spacings:

• Weak disorder $W = 5 \ll W_c$:

Wavefunctions on a Random Regular Graph: Weak and strong disorder limits

Typical wavefunction and PDF of the nearest level spacings:

• Weak disorder $W = 5 \ll W_c$:

• Strong disorder $W = 25 \gg W_c$:

IPR and ergodicity. Inside the delocalized phase: W = 5, W = 10

 Typical WF in the delocalized phase: evolution with disorder:

IPR and ergodicity. Inside the delocalized phase: W = 5, W = 10

 Typical WF in the delocalized phase: evolution with disorder:

Inverse Participation Ratio (IPR): $I_2 = N \langle |\psi|^4 \rangle$. For uniform spreading of the WF: $I_2(N \to \infty) = C/N$ with Cindependent on the system size.

Anderson localization on a Random Regular Graphs: summary of theoretical results

Theory predicts only one phase transition, at which, simultaneously:

• Delocalization transition happens: ψ becomes delocalized over macroscopic number of sites.

Anderson localization on a Random Regular Graphs: summary of theoretical results

Theory predicts only one phase transition, at which, simultaneously:

- Delocalization transition happens: ψ becomes delocalized over macroscopic number of sites.
- Spectral statistics turns to Wigner-Dyson: level repulsion establishes.

Anderson localization on a Random Regular Graphs: summary of theoretical results

Theory predicts only one phase transition, at which, simultaneously:

- Delocalization transition happens: ψ becomes delocalized over macroscopic number of sites.
- Spectral statistics turns to Wigner-Dyson: level repulsion establishes.
- Eigenfunctions become ergodic, being spread uniformly all over the system.

Anderson localization on a Random Regular Graphs: Recent numerical studies

• Exact diagonalization on RRG (m = 2) with diagonal disorder: G Biroli et al (2012, unpublished), A. De Luca et al (2014)

Anderson localization on a Random Regular Graphs: Recent numerical studies

- Exact diagonalization on RRG (m = 2) with diagonal disorder: G Biroli et al (2012, unpublished), A. De Luca et al (2014)
- Main claim: existence of delocalized non-ergodic phase on the RRG, characterized by fractal behaviour of wavefunctions at the delocalized side, i. e.:

 $I_2(N \to \infty) = CN^{-\alpha}$

with $\alpha < 1$ in the thermodynamic limit of $N \to \infty$.

Anderson localization on a Random Regular Graphs: Recent numerical studies

- Exact diagonalization on RRG (m = 2) with diagonal disorder: G Biroli et al (2012, unpublished), A. De Luca et al (2014)
- Main claim: existence of delocalized non-ergodic phase on the RRG, characterized by fractal behaviour of wavefunctions at the delocalized side, i. e.:

 $I_2(N \to \infty) = CN^{-\alpha}$

with $\alpha < 1$ in the thermodynamic limit of $N \to \infty$.

 Contradicts existing analytical results and of (potentially) high impact.

Anderson localization on a Random Regular Graphs: Recent numerical studies

• Interpretation of numerics is a very delicate issue in the absence of analytical results for finite-*N* corrections.

Anderson localization on a Random Regular Graphs: Recent numerical studies

- Interpretation of numerics is a very delicate issue in the absence of analytical results for finite-N corrections.
- Crossing points put forward to advocate for existence of non-ergodic phases.

G. Biroli et al

A. De Luca et al

Interpretation of finite-size behaviour of IPR: running critical exponents $I_2 \sim N^{-\alpha}$

• Define pseudo-fractal exponent α as:

 $\alpha = -\frac{\partial \log I_2}{\partial \log N}.$

Interpretation of finite-size behaviour of IPR: running critical exponents $I_2 \sim N^{-\alpha}$

• Define pseudo-fractal exponent α as:

$$\alpha = -\frac{\partial \log I_2}{\partial \log N}.$$

1 Localized phase: $\alpha(N \to \infty) = 0$ 2 Ergodic phase: $\alpha(N \to \infty) = 1$

Interpretation of finite-size behaviour of IPR: running critical exponents $I_2 \sim N^{-\alpha}$

• Define pseudo-fractal exponent α as:

$$\alpha = -\frac{\partial \log I_2}{\partial \log N}.$$

- 1 Localized phase: $\alpha(N \to \infty) = 0$ 2 Ergodic phase: $\alpha(N \to \infty) = 1$
- Expectation on RRG: Delocalized \equiv Ergodic

Interpretation of finite-size behaviour of IPR: running critical exponents $I_2 \sim N^{-\alpha}$

• Exact diagonalization with size up to N = 262K:

Interpretation of finite-size behaviour of IPR: running critical exponents $I_2 \sim N^{-\alpha}$

• Exact diagonalization with size up to N = 262K:

• Non-monotonous behaviour of $\alpha(\ln N)$ with minimum at $N_{min}(W)$.

Interpretation of finite-size behaviour of IPR: spectral statistics

• Mean adjacent gap ratio: $r = \langle \delta_{i+1}/\delta_i \rangle$ as a function W for various N:

Interpretation of finite-size behaviour of IPR: spectral statistics

• Mean adjacent gap ratio: $r = \langle \delta_{i+1}/\delta_i \rangle$ as a function W for various N:

• Apparent crossing point $W_*(N)$ drifts logarithmically (alternatively: $N_*(W)$).

Critical length on the disordered RRG

The crossover should happen at

$$N \sim N_c \propto \exp\left[(W - W_c)^{-1/2}\right]$$

Critical length on the disordered RRG

The crossover should happen at

$$N \sim N_c \propto \exp\left[(W - W_c)^{-1/2}\right]$$

• As extracted from $r(\ln N)$ and $\alpha(\ln N)$:

Random Regular Graph vs Cayley Tree

• Critical point:
$$N \to \infty$$
: $W_{RRG}^{(c)} \equiv W_{CT}^{(c)}$

Random Regular Graph vs Cayley Tree

- Critical point: $N \to \infty$: $W^{(c)}_{RRG} \equiv W^{(c)}_{CT}$
- What can we say about finite-size behaviour? Compare statistics of ψ^4 at root of CT (*n* generations) and $\langle \psi^4 \rangle$ at RRG of the same size.

Random Regular Graph vs Cayley Tree

Statistics of wavefunctions

Random Regular Graph vs Cayley Tree

Statistics of wavefunctions

• In terms of (pseudo)-fractal exponent α :

Wavefunction statistics at finite-size CT

For disordered electronic systems:

$$\left|\psi(r)\right|^{2} = \frac{1}{4\pi\nu V} \lim_{\eta \to 0} \eta^{-1} \left\langle G_{R}(r,r)G_{A}(r,r)\right\rangle$$

Wavefunction statistics at finite-size CT

.

For disordered electronic systems:

$$\left|\psi(r)\right|^{2} = \frac{1}{4\pi\nu V} \lim_{\eta \to 0} \eta^{-1} \left\langle G_{R}(r,r)G_{A}(r,r)\right\rangle$$

$$|\psi(r)|^2 = -\frac{1}{2\pi\nu\eta V}\lim_{\eta\to 0}\int Q_{11}(r)Q_{22}(r)e^{-S(Q)}dQ$$

n the limit of $\eta\to 0$ only the dependence on $1\lesssim \lambda_1<\infty$
persists:

 $P(Q) \to P(\eta \lambda_1).$

Wavefunction statistics at finite-size CT

For disordered electronic systems:

$$\left|\psi(r)\right|^{2} = \frac{1}{4\pi\nu V} \lim_{\eta \to 0} \eta^{-1} \left\langle G_{R}(r,r)G_{A}(r,r)\right\rangle$$

$$|\psi(r)|^2 = -rac{1}{2\pi
u\eta V} \lim_{\eta \to 0} \int Q_{11}(r)Q_{22}(r)e^{-S(Q)}dQ$$

the limit of $\eta \to 0$ only the dependence on $1 \lesssim \lambda_1 < \infty$

persists:

In

$$P(Q) \to P(\eta \lambda_1).$$

 Explicit expressions for the integral kernels a cumbersome for realistic model, let us start with a toy example.

Simple example: Vector O(n,1) sigma-model on a CT

 Minimal model to study localization transition. Introduced as a toy model by Zirnbauer 1990. Later studied by I Gruzberg and A Mirlin 1996:

$$\mathcal{H} = J \sum_{ij} \vec{n}_i \cdot \vec{n}_j + \eta \sum_i \sigma_i$$

with $\vec{n} = (\sigma, \vec{\pi})$ for n + 1 - component vector constrained by $\vec{n}^2 = \sigma^2 - \vec{\pi}^2 = 1$ and η for symmetry-breaking field.

Simple example: Vector O(n,1) sigma-model on a CT

 Minimal model to study localization transition. Introduced as a toy model by Zirnbauer 1990. Later studied by I Gruzberg and A Mirlin 1996:

$$\mathcal{H} = J \sum_{ij} \vec{n}_i \cdot \vec{n}_j + \eta \sum_i \sigma_i$$

with $\vec{n} = (\sigma, \vec{\pi})$ for n + 1 - component vector constrained by $\vec{n}^2 = \sigma^2 - \vec{\pi}^2 = 1$ and η for symmetry-breaking field.

• Shows phase transition at $J = J_c$ for $0 \le n < 1$. We will be interested in n = 0. For m = 2: $J_c \approx 0.026$.

Simple example: Vector O(n,1) sigma-model on a CT

 Minimal model to study localization transition. Introduced as a toy model by Zirnbauer 1990. Later studied by I Gruzberg and A Mirlin 1996:

$$\mathcal{H} = J \sum_{ij} \vec{n}_i \cdot \vec{n}_j + \eta \sum_i \sigma_i$$

with $\vec{n} = (\sigma, \vec{\pi})$ for n + 1 - component vector constrained by $\vec{n}^2 = \sigma^2 - \vec{\pi}^2 = 1$ and η for symmetry-breaking field.

- Shows phase transition at $J = J_c$ for $0 \le n < 1$. We will be interested in n = 0. For m = 2: $J_c \approx 0.026$.
- Statistical interpretation: vertex-reinforced jump process (VRJP) on a tree.

Vector O(n, 1) sigma-model: $N \to \infty$ phase transition

• At $N \to \infty$ distribution function of an order parameter $P(\vec{n})$ satisfies the integral equation:

$$P(\vec{n}) = \int d\vec{n}' L(\vec{n},\vec{n}') D(\vec{n}') P^m(\vec{n}')$$

with $L(\vec{n},\vec{n}')=e^{-J\vec{n}\cdot\vec{n}'}$ and $D(\vec{n})=e^{-\eta\sigma}.$

• Does the order parameter $P(\theta)$ depend on η in the limit of $\eta \to 0$? The answer depends on *J*:

Vector O(n, 1) sigma-model: $N \to \infty$ phase transition

• At $N \to \infty$ distribution function of an order parameter $P(\vec{n})$ satisfies the integral equation:

$$P(\vec{n}) = \int d\vec{n}' L(\vec{n},\vec{n}') D(\vec{n}') P^m(\vec{n}')$$

with $L(\vec{n},\vec{n}')=e^{-J\vec{n}\cdot\vec{n}'}$ and $D(\vec{n})=e^{-\eta\sigma}.$

• Does the order parameter $P(\theta)$ depend on η in the limit of $\eta \to 0$? The answer depends on *J*:

21/34

Vector O(n, 1) sigma-model: finite $N, \eta \rightarrow 0$.

• The symmetry breaking factor $D(\vec{n})$ is significant for $\theta \sim \ln 1/\eta$. Introduce $t = \ln (\eta \cosh \theta)$ and consider $\eta \to 0$.

Vector O(n, 1) sigma-model: finite $N, \eta \rightarrow 0$.

- The symmetry breaking factor $D(\vec{n})$ is significant for $\theta \sim \ln 1/\eta$. Introduce $t = \ln (\eta \cosh \theta)$ and consider $\eta \to 0$.
- Integration out of the nodes layer by layer $(n = 1, 2, ..., \ln N / \ln m)$:

$$P_{n+1}(t) = \int L(t - t')e^{-e^{t'}}P_n^m(t')dt'$$

with $L(t) = \frac{1}{2K_{1/2}(J)}e^{t/2 - J\cosh t}$.

Tail analysis

Iterations produce a drifting kink:

Tail analysis

Iterations produce a drifting kink:

K. Tikhonov AL on RRG and CT 23/34

Tail analysis: cont.

• For $t \to -\infty$, where $P = 1 + \delta P(t)$:

$$\delta P_{n+1}(t) = m \int L(t-t') \delta P_n(t') dt'$$

Tail analysis: cont.

• For $t \rightarrow -\infty$, where $P = 1 + \delta P(t)$:

$$\delta P_{n+1}(t) = m \int L(t-t') \delta P_n(t') dt'$$

• $\delta P(t) = e^{\lambda t}$ are eigenfunctions of \hat{L} with spectrum ϵ_{λ}

Tail analysis: cont.

• For $t \to -\infty$, where $P = 1 + \delta P(t)$:

$$\delta P_{n+1}(t) = m \int L(t-t') \delta P_n(t') dt'$$

• $\delta P(t) = e^{\lambda t}$ are eigenfunctions of \hat{L} with spectrum ϵ_{λ}

 In the ordered phase: mε_λ > 1, there is no solution for asymptotic self-consistent equation.

Tail analysis: cont.

The drifting kink is formed instead

Tail analysis: cont.

The drifting kink is formed instead

• The tail: $\delta P_n(t) = -\#e^{\lambda(t+\frac{n}{\lambda}\ln m\epsilon_{\lambda})}$. On the linear level: $\frac{1}{2} \leq \lambda \leq 1$ are possible. Non-linearities dynamically select λ according to:

$$\frac{\ln m \epsilon_{\lambda}}{\lambda} \to \min$$

Wavefunction statistics at finite-size CT

Analysis is exactly the same with more complicated kernels.

Wavefunction statistics at finite-size CT

- Analysis is exactly the same with more complicated kernels.
- Distribution function of $u = \psi_r^2$ is expressed in terms of P(t):

$$\mathcal{P}(u) = N^{-1} \partial_u^2 P_{\ln N / \ln m}(t)$$

Wavefunction statistics at finite-size CT

- Analysis is exactly the same with more complicated kernels.
- Distribution function of $u = \psi_r^2$ is expressed in terms of P(t):

$$\mathcal{P}(u) = N^{-1} \partial_u^2 P_{\ln N / \ln m}(t)$$

• Recall the drifting kink equation:

$$P_n(t) = \begin{cases} 1 - \# e^{\lambda(t + \alpha \ln N)}, \ t + \alpha \ln N < 0\\ 0, \ \text{otherwise} \end{cases}$$

with $\alpha = \frac{\min_{\lambda}(\epsilon_{\lambda}/\lambda)}{\ln m}$.

Distribution function of wavefunction $u = \psi_r^2$ at the root

As a result, WF at root is distributed according to:

$$\mathcal{P}(u) = egin{cases} N^{-1+lpha\lambda_*} u^{\lambda_*-2}, \ uN^lpha \lesssim 1 \ 0, \ ext{otherwise} \end{cases}$$

Distribution function of wavefunction $u = \psi_r^2$ at the root

As a result, WF at root is distributed according to:

$$\mathcal{P}(u) = \begin{cases} N^{-1+\alpha\lambda_*} u^{\lambda_*-2}, \ u N^{\alpha} \lesssim 1\\ 0, \ \text{otherwise} \end{cases}$$

• Statistics of the WF from the numerics (W=14):

K. Tikhonov AL on RRG and CT 27/34

Distribution function of wavefunction $u = \psi_r^2$ at the root

For the 2nd moment at root:

$$N\left\langle\psi_r^4\right\rangle = N^{-\alpha}.$$

Compare with $\alpha = 1$ for RRG at $N \to \infty$.

Distribution function of wavefunction $u = \psi_r^2$ at the root

For the 2nd moment at root:

$$N\left\langle\psi_r^4\right\rangle = N^{-\alpha}.$$

Compare with $\alpha = 1$ for RRG at $N \to \infty$.

• More generally, for $q \ge 1/2$:

$$\left\langle \psi_r^{2q} \right\rangle = N^{-q + (q-1)(1-\alpha)}$$

Specific examples: $\alpha(J)$ for some concrete models.

• Exact ϵ_{λ} for SM are provided in the original papers.

Specific examples: $\alpha(J)$ for some concrete models.

- Exact ϵ_{λ} for SM are provided in the original papers.
- For Anderson model one may use quasi-ACAT approximation:

$$\epsilon_{\lambda} \approx \frac{1}{\lambda - 1/2} \frac{1}{W - 4/W} \left[(W/2)^{2\lambda - 1} - (W/2)^{-2\lambda + 1} \right]$$

Specific examples: $\alpha(J)$ for some concrete models.

- Exact ϵ_{λ} for SM are provided in the original papers.
- For Anderson model one may use quasi-ACAT approximation:

$$\epsilon_{\lambda} \approx \frac{1}{\lambda - 1/2} \frac{1}{W - 4/W} \left[(W/2)^{2\lambda - 1} - (W/2)^{-2\lambda + 1} \right]$$

• As a result, for m = 2 we obtain (introducing $g = W^{-2}$ for the Anderson model):

Large-m behaviour of Anderson model

- For $m \gg 1$ for all considered models $\alpha(g)$ collapse to a single curve.

Large-m behaviour of Anderson model

- For $m \gg 1$ for all considered models $\alpha(g)$ collapse to a single curve.
- Consider Anderson model as an example:

On recent preprint by B Altshuler at al arXive: 1605.02295

On recent preprint by B Altshuler at al arXive: 1605.02295

• It is admitted that the phase at W < 10 on RRG is ergodic.

On recent preprint by B Altshuler at al arXive: 1605.02295

- It is admitted that the phase at W < 10 on RRG is ergodic.
- First-order phase transition point $(N \rightarrow \infty)$ at W = 10 is proposed instead. Not consistent with exact diagonalization up to 262K for W = 11.

On recent preprint by B Altshuler at al arXive: 1605.02295

- It is admitted that the phase at W < 10 on RRG is ergodic.
- First-order phase transition point $(N \to \infty)$ at W = 10 is proposed instead. Not consistent with exact diagonalization up to 262K for W = 11.
- Population dynamics: simulates a loop-less graph.
 Confirms the fractal statistics of the wavefunction at the root of a CT.

Conclusion

K. Tikhonov AL on RRG and CT 32/34

Outlook

• Deviations of the RRG ensemble from RMT at finite N

For spectral properties: F Metz, G Parisi and L Leuzzi 2014

Outlook

- Deviations of the RRG ensemble from RMT at finite NFor spectral properties: F Metz, G Parisi and L Leuzzi 2014
- Implications for Many-Body Localization

For a nice recent discussion of connections of a quantum dot problem with hopping Hamiltonian on a Bethe lattice see I Gornyi, A Mirlin and D Polyakov 2016

Acknowledgements

V. Kravtsov and M. Feigel'man for useful discussions

Acknowledgements

- V. Kravtsov and M. Feigel'man for useful discussions
- A. Prokofiev, A. Poenicke, L. Shchur, L. Barash, I.
 Oseledets for help with (free) computer power

Acknowledgements

- V. Kravtsov and M. Feigel'man for useful discussions
- A. Prokofiev, A. Poenicke, L. Shchur, L. Barash, I.
 Oseledets for help with (free) computer power

Thank You!