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Outline 

• A brief introduction to kicked rotor 

• Planck’s quantum-driven IQHE in kicked spin 

rotor — phenomenon, analytic theory, and 

numerical confirmation 

• Conclusion 



What is kicked rotor?  
- a free rotating particle under the influence 

of sequential time-periodic driving 

controlled by two parameters:  

• Planck’s quantum he 

• nonlinear parameter K 

Planck’s quantum 

(effective Planck’s 

constant) 
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Chirikov standard map 

- the birth of classical kicked rotor (he→0) 



Chirikov standard map 

- the birth of classical kicked rotor (he→0) 



classical kicked rotor 

Liouville integrability:  

•regular foliation of phase space 

•action variables = complete sets of 

invariants of Hamiltonian flow 
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classical kicked rotor 

transition from weak chaoticity (KAM, nearly integrable) to 

strong chaoticity 
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from B. Chirikov and D. Shepelyansky, Scholarpedia 3, 3550  (2008) 

K increases from 0. 
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classical kicked rotor 

transition from “insulator” (confined motion in l space) to 

“classical normal metal” (deconfined motion in l space) 
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What happens to quantum 

kicked rotor (he>0)?  



(generic) irrational values of he/(4)  

dynamical localization 



Bloch-Floquet theory               dynamical-Anderson localization analogy 



Bloch-Floquet theory               dynamical-Anderson localization analogy 

quantum kicked rotor  

= quantum disordered system? 



Bloch-Floquet theory               dynamical-Anderson localization analogy 

NO! 



sensitivity to the value of he/(4): 

he/(4) =p/q  
small q: nonuniversal 

supermetal 

result of translation symmetry: n→n+q 



sensitivity to the value of he/(4): 

he/(4) =p/q 
large q: universal metal-supermetal dynamics crossover 

Fang, Tian, and Wang, PRB ‘15 

??? 

√ 
(metal) 

(supermetal) 



sensitivity to the value of he/(4): 

he/(4) =p/q 
large q: universal metal-supermetal dynamics crossover 

Fang, Tian, and Wang, PRB ‘15 

√ 

orthogonal symmetry 

•derived by field theory 

•confirmed by random matrix theory 

•confirmed by numerical experiments 



sensitivity to the value of he/(4): 

he/(4) =p/q  
large q: universal metal-supermetal dynamics crossover 

Fang, Tian, and Wang, PRB ‘15 

x 

unitary symmetry 

•derived by field theory 

•confirmed by random matrix theory 

•confirmed by numerical experiments 



quasiperiodically quantum kicked 

rotor: irrational he/(4) 
driven by d-incommensurate frequencies 

Idea dated back to Casati, Guarneri, and Shepelyansky, PRL ‘89  

Experiment: Delande, Garreau et.al., PRL ‘08, 09  

Field theory: Tian, Altland, and Garst PRL 11’ 

)~( tKK 



quasiperiodically quantum kicked 

rotor: rational he/(4) 
• Anderson insulator turned into supermetal (E~t2) ; 

• Anderson metal-insulator transition turned into metal-

supermetal transition (Tian, Altland, and Garst, PRL ‘11) 

numerical confirmation  

(Wang, Tian, Altland, PRB 14’) 

p=1,q=3,d=4 



rich Planck’s quantum-driven phenomena 

in spinless kicked rotors; 

associated with the restoration (breaking) 

of translation symmetry in the angular 

momentum space.  

spinful kicked rotor? 
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• Planck’s quantum-driven IQHE in kicked spin 
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θ1 

quasiperiodically quantum 

kicked spin-1/2 rotor 

incommensurate with 2   

matrix Pauli :
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quasiperiodically quantum 

kicked spin-1/2 rotor 

incommensurate with 2   

matrix Pauli :
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θ1 

quasiperiodically quantum 

kicked spin-1/2 rotor 

incommensurate with 2   

unitary class 



θ1 

quasiperiodically quantum 

kicked spin-1/2 rotor 

incommensurate with 2   

Microscopically, the system is controlled by single parameter – 

Planck’s quantum he. 
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θ1 

quasiperiodically quantum 

kicked spin-1/2 rotor 

incommensurate with 2   

Macroscopically, the system is controlled by two phase parameters – 

energy growth rate (EGR) and (hidden or emergent) quantum number. 
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Planck’s quantum-driven IQHE (I) 

EGR at large t 

(Planck’s quantum) 

 

-1 

Planck’s quantum dependence of EGR in long times 

for almost all Planck’s quantum, EGR vanishes 

at large t limit→insulator  



Planck’s quantum-driven IQHE (II) 

EGR at large t 

(Planck’s quantum) 

𝜎 ＊ 

-1 

Planck’s quantum dependence of EGR in long times 

● insulator  

● quantum metal (diffusion); 

The peak width shrinks to 0 at 

infinite t. 



Planck’s quantum-driven IQHE(III) 

(Planck’s quantum) 

𝜎 ＊ 

-1 

● σ* independent of the details of V 

and the critical points; order of unity 

● insulator  

EGR at large t 

● quantum 

metal (diffusion) 



Planck’s quantum-driven IQHE (IV) 

𝜎 ＊ 
● equally spaced when 

Planck’s quantum is small 

● insulator  

● σ* independent of the details of V 

and the critical points; order of unity 

(Planck’s quantum) -1 

EGR at large t 

● quantum 

metal (diffusion) 



Planck’s quantum-driven IQHE (V) 

𝜎 ＊ 
● equally spaced when 

Planck’s quantum is small 

What is the nature of metal-insulator 

transitions? 

● σ* independent of the details of V 

and the critical points; order of unity 

(Planck’s quantum) -1 

EGR at large t 

● quantum 

metal (diffusion) 



Planck’s quantum-driven IQHE(VI) 

Quantum Number 

(Planck’s quantum) 

n+4 𝜎 ＊ 

n+3 

n+2 

n+1 

n 

-1 

●insulator characterized by 

an integer  

EGR at large t 



Planck’s quantum-driven IQHE(VII) 

Quantum Number Energy Growth Rate 

(Planck’s quantum) 

n+4 𝜎 ＊ 

n+3 

n+2 

n+1 

n 

-1 

●insulator characterized by 

an integer  

● quantum number 

increases by unity  



Planck’s quantum-driven 

IQHE(VIII) 

Quantum Number Energy Growth Rate 

(Planck’s quantum) 

n+4 𝜎 ＊ 

n+3 

n+2 

n+1 

n 

-1 

●insulator characterized by 

an integer  

● quantum number 

increases by unity  

●This quantum number is of 

topological nature.  



Integer quantum Hall effect 

ρxx  ρxy 

two dimensional electron gas 

(MOSFET) 

strong magnetic field 

quantized Hall conductance 

Claus 

von 

Klitzing 



Phenomenological analogy 

to conventional IQHE 

• energy growth rate → longitudinal conductivity 

• quantum number → Hall conductivity 

• inverse Planck’s quantum → filling fraction 



Fundamental differences from conventional IQHE 

• no magnetic field, no electromagnetic response, driven by 

Planck’s quantum 

• strong chaoticity origin (This phenomenon disappears even when 

regular quantum dynamics is partially restored.) 

• one-body system → no concept such as integer filling 

• no translation symmetry, no adiabatic parameter cycle 



two-particle Green function 

interference between  

advanced and retarded quantum 

amplitudes 

Analytic theory (I) 

•mapping onto 2D periodic quantum dynamics 
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• exact expression for Kω - functional integral over 

supermatrix field (color-flavor transformation, Zirnbauer, 

‘96) 

Analytic theory (I) 

•mapping onto 2D periodic quantum dynamics 
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Analytic theory (II) 

•mapping onto 2D periodic quantum dynamics 

• chaos (fast correlation decay) → local field Z(N)  
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Analytic theory (III) 
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•mapping onto 2D periodic quantum dynamics 

• Kω - functional integral over Z(N) 
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independent of H0 



Analytic theory (III) 

topological θ-term 
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•mapping onto 2D periodic quantum dynamics 

• Kω - functional integral over Z(N)  
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• Kω - functional integral over Z(N)   

Analytic theory (III) 

•mapping onto 2D quantum dynamics 
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“classical Hall conductivity” 



   insulating phase: σ=0, σH=n  

(emergent quantum number) 

metallic phase: σ=σ*, σH=n+1/2 

Analytic theory (IV) 

• background field formalism (Pruisken ‘80s) 

• instanton method (Burmistrov and Pruisken ‘05) 

staircase-like pattern 

Khmelnitskii’s RG flow (‘83) 

“classical Hall 

conductivity” 



Numerical test (t<102): 

chaoticity 

☛ linear energy growth 

in short times 

☛ blue dots are simulation 

results for the energy 

growth rate in short times; 

 

☛ fluctuations of eigen 

quasi-energies follow 

Wigner-Dyson statistics  of 

unitary type. 

  2121 coscos18.0,sin,sin

,
2arctan2









d

d
d

d
V

☛ red line is the 

theoretical prediction.  

Beenakker et. al. ‘11 



Numerical test (t<6107):  

transition between topological 

insulating phases   

Hall plateaux (n=0,1,2,…) 

critical points (n=1/2,3/2, …) 

☛ Analytic results for σH (he) 

predict three transition points at 

1/he =0.73,2.19,3.60 for 0.23< he 

<1.50. 

☛ Simulations indeed show three 

transition points at 1/he 

=0.77,2.13,3.45 . 

☛ Simulations show that the 

growth rate at the critical point is 

universal. 



Numerical test (t<6105):  

transition between topological 

insulating phases   

Hall plateaux (n=0,1,2,…) 

critical points (n=1/2,3/2, …) 

☛ Analytic results for σH (he) 

predict three transition points at 

1/he =0.73,2.19,3.60 for 0.23< he 

<1.50. 

☛ Simulations indeed show three 

transition points at 1/he 

=0.77,2.13,3.45 . 

☛ Simulations show that the 

growth rate at the critical point is 

universal. 

☛ Simulations show that the 

transition is robust against the 

change of H0. 



Universality of critical energy growth rate 



expectation from Chern-

Simons theory (Lee, 

Kivelson, and Zhang ‘92) 

of conventional IQHE: 

25.0*

Universality of critical energy growth rate 
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other conditions not changed 
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Naïve Chern index 

predicts  

only two phases, no 

matter the value of he  

(Beenakker et. al. ‘11). 
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Rich topological 

phases are excited by 

chaos. 



Destroying fully developed chaos: 

absence of Planck’s quantum-driven IQHE 

q
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 rational

☛ no localization-delocalization 

transitions occurs; the system is 

always insulating. 

☛ the equivalent 2D system 

exhibits ballistic motion in the 

virtual (n2) direction. 

point critical

2

~
 irrational






Conclusion 

• a deep connection between chaos and IQHE 

uncovered 

• Planck’s quantum ↔ magnetic field; 

  energy growth rate ↔ longitudinal conductivity; 

  hidden quantum number ↔ quantized Hall 

conductivity; 

• strong chaoticity origin 

• rich topological quantum phenomena emerge from 

chaos 



Open questions 
• the nature of the analogy between the novel 

transition and connventional IQHE 

• nature of universal quantum diffusion 

• experimental tests (spin magnetic resonance and 

cold atomic gases) 

• … 


