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Artificial quantum systems

Universality in isolated quantum systems out-of-equilibrium? 

mutli-qubit  
systems

cold atoms NV centers in diamond,
polar molecules, 

….

trapped ions



Outcomes of unitary dynamics

• Thermalization: 
 
 
 
 

• MBL phase: breakdown of thermalization 

e-iHt

time

[Anderson, Fleishman’80] 
[Basko, Aleiner,Altshuler’05]  
[Gorniy, Polyakov, Mirlin’05] 

[Oganesyan,Huse’08]  
[Znidaric,Prosen’08] 
[Pal,Huse’10]

e-iHt

memory of  
initial state

time

[Deutsch’91] [Srednicki’94] 
 [Rigol,Dunjko,Olshanii’08]

subsystem  
in thermal state  



Experiments on MBL 

• Signatures of localized phase with interactions: 
 
 
 
 
 
 
 
 

• MBL signatures in dynamics? Local observables?

[M. Schreiber, et. al. Science’15] [P. Bordia, et. al.  arXiv: 1509.00478]

by the ratio of lattice periodicities b, disorder
strength D, and phase offset f. Finally,U represents
the on-site interaction energy, and

ˇ

ni;s ¼

ˇ

c †i;s

ˇ

ci;s
is the local number operator (Fig. 1C).
This quasirandom model is special in that for

almost all irrational b (37), all single-particle
states become localized at the same critical dis-
order strength D/J = 2 (38). For larger disorder
strengths, the localization length decreases mono-
tonically. Such a transition was indeed ob-
served experimentally in a noninteracting bosonic
gas (30). In contrast, truly random disorder will
lead to single-particle localization in one dimen-
sion already for arbitrarily small disorder strengths.
Previous numerical work indicatesMBL in quasi-
random systems to be similar to that obtained for
a truly random potential (36).

Experiment

We experimentally realized the Aubry-André
model by superimposing on the primary, short
lattice (ls = 532 nm) a second, incommensu-
rate disorder lattice with ld = 738 nm (thus, b =
ls/ld ≈ 0.721) and control J, D, and f via lattice
depths and relative phase between the two lat-
tices (37). The interactions (U) between atoms
in the two different spin states j↑i and j↓i are
tuned via a magnetic Feshbach resonance (37).
In total, this provides independent control of
U, J, and D and enables us to continuously tune
the system from an Anderson insulator in the
noninteracting case to the MBL regime for inter-
acting particles.
An additional long lattice (ll = 1064 nm = 2ls)

forms a period-two superlattice (39, 40) together
with the short lattice and is used during the prep-
aration of the initial CDW state and during de-
tection (37). Deep lattices along the orthogonal
directions [l⊥= 738nmandV⊥=36(1)ER] create an
array of decoupled 1D tubes. Here, ER ¼ h2=
ð2ml2latÞ denotes the recoil energy, with h being
Planck’s constant, m the mass of the atoms, and
llat the respective wavelength of the lattice lasers.
We used a two-component degenerate Fermi

gas of 40K atoms, consisting of an equal mixture

of 90 × 103 to 110 × 103 atoms in each of the two
lowest hyperfine states jF ;mFi ¼ j 92 ;−

9
2i ≡ j↓i

and j 92 ;−
7
2i ≡ j↑i, at an initial temperature of

0.20(2) TF, where TF is the Fermi temperature.
The atoms were initially prepared in a finite
temperature band insulating state (41), with
up to 100 atoms per tube in the long and or-
thogonal lattices.We then split each lattice site by
ramping up the short lattice in a tilted con-
figuration (37) and subsequently ramped down
the long lattice. This creates a CDW, in which
there are no atoms on odd lattice sites but zero,
one, or two atoms on each even site (40, 42). This
initial CDW is then allowed to evolve for a given
time in the 8.0(2)ER deep short lattice at a
specific interaction strength U in the presence of
disorder D. In a final step, we detected the num-
ber of atoms on even and odd lattice sites by
using a band-mapping technique that maps them
to different bands of the superlattice (37, 42).
This allows us to directly measure the imbalance
I , as defined in Eq. 1, in much larger systems
than what is numerically feasible.

Results

We tracked the time evolution of the imbal-
ance I for various interactions U and disorder
strengths D (Fig. 2). At short times, the imbal-
ance exhibits some dynamics consisting of a fast
decay followed by a few damped oscillations.
After a few tunneling times t = h/(2pJ), the im-
balance approaches a stationary value. In a clean
system (D/J = 0), and for weak disorder, the sta-
tionary value of the imbalance approaches zero.
For stronger disorder, however, this behavior
changes dramatically, and the imbalance attains
a nonvanishing stationary value that persists for
all observation times. Because the imbalancemust
decay to zero on approaching thermal equilib-
rium at these high energies, the nonvanishing
stationary value of I directly indicates non-
ergodic dynamics. Deep in the localized phase,
in which unbiased numerical density-matrix re-
normalization group (DMRG) calculations are
feasible because of the slowentanglement growth,

we found the stationary value obtained in the
simulations to be in very good agreement with
the experimental result. These simulations were
performed for a single homogeneous tube with-
out any trapping potentials (37). The stronger
damping of oscillations observed in the exper-
iment can be attributed to a dephasing caused
by variations in J between different 1D tubes
(37, 42).
We experimentally observed an additional

very slow decay of I on a time scale of several
hundred tunneling times for all interaction
strengths, which we attribute to the fact that
our system is not perfectly closed owing to small
background gas losses, technical heating, pho-
ton scattering, and coupling to neighboring
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Fig. 1. Schematics of the many-
body system, initial state, and
phase diagram. (A) Initial state of
our system consisting of a CDW, in
which all atoms occupy even sites
(e) only. For an interacting many-body
system, the evolution of this state over
time depends on whether the system is
ergodic or not. (B) Schematic phase
diagram for the system. In the ergodic,
delocalized phase (white), the initial
CDWquickly decays,whereas it persists
for long times in the nonergodic, local-
ized phase (yellow).The striped area
indicates the dependence of the
transition on the doublon fraction, with
the black solid line indicating the case of no doublons.The black dash-dotted line represents the experimentally observed transition for a finite doublon fraction,
extracted from the data in Fig. 4.The gray arrows depict the postulated pattern of renormalization group flows controlling the localization transition. For U = 0, as
well as in the limit of infinite U with no doublons present (37), the transition is controlled by the noninteracting Aubry-André critical point, represented by the
unstable gray fixed points. Generically, however, it is governed by the MBL critical point (48), shown in red. The U = 0 and U = ∞ as well as the D/J = 0 limits
represent special integrable cases that are not ergodic (51, 52). (C) A schematic representation of the three terms in the Aubry-André Hamiltonian (Eq. 2).

Fig. 2. Time evolution of an initial CDW. A CDW,
consisting of fermionic atoms occupying only even
sites, is allowed to evolve in a lattice with an ad-
ditional quasirandom disorder potential. After var-
iable times, the imbalance I between atoms on
odd and even sites is measured. Experimental
time traces (circles) and DMRG calculations for
a single homogeneous tube (lines) (37) are shown
for various disorder strengths D. Each experi-
mental data point denotes the average of six dif-
ferent realizations of the disorder potential, and
the error bars show the SD of the mean. The
shaded region indicates the time window used
to characterize the stationary imbalance in the
rest of the analysis.
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Imbalance                         saturates!

initial density  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also B. DeMarco, C. Monroe and others



Quasi-local conserved quantities

• If model is in MBL phase, rotate basis  
 

• Conserved spins:  τi = U† Si U  quasi-local; complete basis 
 
 
 
 

• Consequences: no transport, ETH breakdown,  
power-law relaxation

Hij / exp(�|i� j|/⇠)
τiz τjz

SiSj

H =
X

i

~Si · ~Si+1 + hiS
z
i

hi
J⟂ Jz ⚡

[MS, Papic, Abanin ’13]   
[Huse, Oganesyan ’13]

 [Imbrie’14]



Dynamics in MBL phase

• Phases randomize  
on distance x(t): 
 
 

• Logarithmic growth of entanglement

• Power-law relaxation of local observables: 

[MS, Papic, Abanin, PRL’13]

tHij = tJ exp(�x/⇠) ⇠ 1

Hij / Je�|i�j|/⇠

distance

time

+ )( + )(+ )(+ )( + )(

+ )(+ )(+ )( + )(+ )(
x(t) = ⇠ log(Jt)

[MS, Papic, Abanin, PRB’14]
��hÔ(t)i � hO(1)i

�� ⇠ 1

ta

memory of initial state



Outline

• This talk:           matrix elements  

1. Delocalization transition

2. Entanglement spectrum in MBL phase 

Physical
spins S

Conserved 
spins !

Properties 
of MBL 

Delocalization  
transition

 [MS, Papic, Abanin,PRX’15]

[MS, Michailidis, Abanin, Papic, arXiv:1605.05737]

??

Thermalizing phase 

disorder W

͠

MBL phase



1. Delocalization 
transition



How to detect delocalization transition?

• Level statistics:  
 
 

• Entanglement fluctuations  
in eigenstates, other probes  
 

• Alternatives? Scaling parameter for transition? 

Thermalizing phase disorder W

͠
MBL phase??

 [MS, Papic, Abanin,PRX’15]

[Oganesyan,Huse,PRB’07]  
[MS,Moore,PRB’16]

[Kjall et al, PRL’14]  
[Luitz et al, PRB’15] 

Wigner-Dyson

Poisson

Transition

disorder W

r



Thouless conductance in Anderson localization

• How to quantify what happens if we join two systems?  
 

• Coupling vs Level spacing

✴  g>>1: states become extended
✴  g<<1: localization!

• Scaling theory of localization:  

• Practical definition of g:

?

g =
ET

�
=

1

�

@2E

@�2E

�

g =
�Ld�2

e2/h

B

g =
1

�

@2E

@�2

E

"
0 2#

 [Abrahams,Anderson,  
Licciardello,Ramakrishnan]



Matrix elements of local operators
local  

perturbation V

• Matrix elements from ETH  

[Srednicki’99]

hi|Sz|ji = e�S(E,R)/2f(Ei,Ej)Rij

• Matrix elements from τi 

Sz =
X

{↵}
⌧̂{↵}B̂{↵}[⌧z]

hi|Sz|ji ⇠ exp(�R/⇠)

R

narrow distribution: 
hi|Sz|ji ⇠ 1/

p
2R

broad distribution:
hi|Sz|ji ⇠ exp(�0R)

Thermalizing phase disorder W

͠

MBL phase



V

• Effect of local perturbation on eigenstates: 
 
 
 

• New eigenstates are localized/delocalized?  

• Parameter: 

Many-body analogue of Thouless conductance

G = log

Vi,i+1

Ei � Ei+1

H ! H + V

H|ni = En|ni (H + V )|↵i = E↵|↵i
Vnm

MBL phase

G ⌧ 1
no resonances 
τ are local

Delocalized 

G � 1

strong mixing  
all spins perturbed

 [MS, Papic, Abanin,PRX’15]



Distribution of Thouless conductance
• Scaling parameter:

• Numerical results for XXZ spin chain: 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Figure 2. Distribution of G = log (|Vnn+1|/�) across the MBL transition displays qualitatively di↵erent scaling with system
size. (a) For weak disorder (W = 0.5),when the system is in the ergodic phase, G increases with system size, and the distribution
shifts to the right. (b) At the MBL transition (W = 3.6), the distribution broadens but does not move. (c) In the MBL phase
(W = 5), G becomes smaller for larger systems, and the shape of the distribution is approximately gaussian.

as a function of the dimensionless energy density and
system size. The dimensionless energy density " (referred
to as “energy density” in the following, for simplicity) is
defined as " = (E�E

min

)/(E
max

�E
min

), where E
min/max

are the energies of ground state (highest excited state) of
our system.

Figure 3 shows the system-size dependence of
hG("

c

, L)i for fixed "
c

= 0.45, which is the energy density
at which the delocalized phase is most robust. Similar to
the behaviour already observed for the distribution of G,
we see that the behaviour of averaged hG("

c

, L)i is quali-
tatively di↵erent at weak and strong disorder. At W . 3
we have dhG("

c

, L)i/dL > 0, and the second derivative
appears to be positive, signalling that larger systems be-
come more and more thermal. At strong disorder W � 4,
hG("

c

, L)i behaves according to Eq.(6), as expected in the
MBL phase. From Fig. 3 we identify the critical value of

hG
("

c
,L

)i

L
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Figure 3. Scaling of G("c, L) in the middle of the band with
the system size for di↵erent disorders W = 1.5, . . . , 5. Value
of disorder is shown on the right of each curve. From here the
critical disorder strength is determined as Wc = 3.6± 0.15.

disorder

W
c

= 3.6± 0.15

using our criterion for the MBL transition, Eq. (7). This
agrees with the previous findings of Refs. [24].
Note that the behavior of hG("

c

, L)i in Fig. 3 is quali-
tatively similar to the scaling of the (phenomenological)
order parameter hlog gi considered in Ref. [28]. In par-
ticular, we also observe the non-monotonic dependence
of hG("

c

, L)i on L in the vicinity of the delocalization
transition for W < W

c

. We also performed the scaling
collapse of the G for W < W

c

[28], which yields a scal-
ing exponent ⌫ ⇡ 0.7 ± 0.1, again consistent with that
obtained in Ref. [24].
Using the same delocalization criteria, we can map out

the many-body mobility edge in the random-field XXZ
model. We define the many-body mobility edge to be at

W

"

Figure 4. Many-body mobility edge "(W ) as a function
of disorder. Blue (red) color indicates regions where hg(", L)i
decreases (grows) with L. Yellow regions correspond to points
where we cannot determine the behavior due to errorbars.
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Scaling of G and many-body mobility edge

• Energy resolved     :

• Numerical results for XXZ spin chain

• Exponent ν=0.7±0.1 agrees with numerics for L=22 spins
[Luitz, Laflorencie, Alet PRB’15]   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size. (a) For weak disorder (W = 0.5),when the system is in the ergodic phase, G increases with system size, and the distribution
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(W = 5), G becomes smaller for larger systems, and the shape of the distribution is approximately gaussian.
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Dynamics at the transition

• Qualitative argument:    (L) = const+O(log L) at transition→ 
logarithmically slow transport

• tEBD simulations for L=24 spins:   
 
 
 
 
 
 

• Consistent with RG studies 

G

 [Vosk,Huse,Altman,PRX’15]

 [Potter,Vasseur,Parameswaran,PRX’15]

 [MS, Papic, Abanin,PRX’15]
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2. MBL phase: 
entanglement 

spectrum 



From entanglement entropy to spectrum

• “Quantumness” of the pure state: 
 
 
 

• Entanglement entropy: 

✴ ground states: probes topological order  

✴ excited states: probes ergodicity 

• Beyond entanglement? More information in {$i}

⇢L = TrR | ih |
trace out R → 

RL

S
ent

= �
P

i �i log�i

[Levin&Wen], [Kitaev&Preskill]

[Li & Haldane]



• Quantum Hall wave function:  
     
 

• MBL phase: conserved quantities label ES  
 
 
 
 

• Coefficients decay as

Organization of entanglement spectrum
ky

kx

C"#""|"#i|""i+
r=1

e�|""""i =C""""|""i|""ic0

+    …..C####|##i|##i+
r=4

e�4

e�2C"##"|"#i|#"i +…+
r=2

|C"..."##"""#| {z }
r

"..."| / e�r

[Li & Haldane]

 ky to organize ES



Power-law entanglement spectrum

• Hierarchical structure of  
 

• Orthogonalize perturbatively 
 
 
 

• Power-law entanglement spectrum  

⇢L =
PL

r=0 | (r)ih (r)|

�(r) / e�4r

h (r)| (r)i / e�2r but non-orthogonal

2rmultiplicity is 

�(0)

�(1)

�(1)

�(2)

�(2)

�(2)

�(2)

�k / 1
k� � ⇡ 4

ln 2



Numerics for XXZ spin chain

• Numerical studies for XXZ spin chain, J⟂=Jz =1  
 

• Power law entanglement spectrum: 

H =
X

i

(hiS
z
i + J?S

+
i S�

i+1 + h.c.)

+
X

i

JzS
z
i S

z
i+1

�k / 1
k�

disorder W = 5

 [arXiv:1605.05737]

 
more details in:



Decay of entanglement spectrum

•  % controls decay of entanglement spectrum  

 
 
 
 
 
 
 
 

• Large value of  % → MPS description!

3

(corresponding to no spin flips in R) is of order one, the
next term corresponds to one spin flip and is of the order
e�, etc. Denoting a = e�, a typical | {µ}Li is:

| {µ}Li = a�rL(↵1; ↵2a; ↵3a
2,↵4a

2; ↵5a
3, . . . ,↵8a

3;

. . . ; ↵1+DR/2a
LR , . . . ,↵

DRaLR)T , (5)

where all |↵
i

| are assumed to be of order one, and we
separated the blocks corresponding to the value of RoD
rR = 0, 1, 2, . . . , LR by semicolons.

If di↵erent vectors | {µ}Li in Eq. (3) were mutually or-
thogonal, their norm h {µ}L | {µ}Li / e�2rL would give
the eigenvalues of ⇢̂R, and hence the ES. In the Sup-
plemental Material [39] we demonstrate it is possible to
perturbatively orthogonalize the vectors | {µ}Li deep in
the MBL phase where e� ⌧ 1. This process results in
the eigenvalues labeled by the RoD r:

�
(r)
k

= �"..." #...#|{z}
r

/ e�4r, (6)

where k = 2r�1 + 1, . . . , 2r labels 2r�1 di↵erent eigen-
values in the block corresponding to RoD r. Note an
extra factor of 2 in the exponent in Eq. (6) compared
to the norm of corresponding | {µ}Li. This additional
suppression arises from the fact that all components in
| {µ}Li, corresponding to blocks with RoD less than r,
are cancelled in the process of orthogonalization [39]. In-
tuitively, this means that the processes, which contribute
to eigenvalues with RoD equal to r in the L subsystem,
flip the same number of spins in the R subsystem.

One can view the RoD r, or equivalently the typical
number of spin flips, as an e↵ective “quantum number”
underlying the structure of the ES. This is analogous
to, e.g., the subsystem’s momentum perpendicular to the
entanglement cut (which also labels the edge states if a
system has topological order); similar structure for the
XXZ ground state was pointed in Ref. [40].

The hierarchical structure of the reduced density ma-
trix implies a power-law structure of the typical ES as a
function of r. Indeed, expressing r as r ⇡ ln k/ ln 2, and
using Eq. (6), we find the typical value of �

k

�
k

/ 1

k�
, � ' 4

 ln 2
. (7)

to decay as a power law with exponent set by  [41].
In addition, we can also understand the finite-size ef-

fects in the ES. The power-law holds until the very last
block, for which r = LR. The eigenvalues of the last
block do not receive corrections until the very last step of
iterative diagonalization [39]. Hence, their average mag-
nitude will reflect the statistics of the coe�cients (4),
which is log-normal deep in the MBL phase [37]. Since we
order the ES, the average value of �

k

for k & 2LR�1 will
deviate from the simple power-law form (7). Instead, it

Figure 2. (Color online) Power-law exponent �, extracted
from the fit of the typical ES, increases with disorder W .
Theoretical prediction refers to � extracted from the scaling
of the matrix elements in Ref. [37].

will be given by the order statistics of the Gaussian distri-
bution which describes accurately the tail of the ES [39].
Numerical results.—To study the ES numerically in

the XXZ chain (1), we use: (i) full exact diagonalization
(ED) for L = 10, 12, 14 spins, (ii) “shift and invert” algo-
rithm (SI) [42] for L = 16, 18, 20, and (iii) a new imple-
mentation of the MPS variational optimization for larger
L (below we present data for L = 30). Our MPS algo-
rithm combines the advantage of SI spectral transforma-
tion, which ensures low energy variance and hence the pu-
rity of eigenstates, with a fast conjugate-gradient linear
solver. The MPS optimization converges e�ciently when
the bond dimension �

max

is such that ln(�
max

) � S,
where S is the maximum entropy for all partitions of the
chain. Using ITensor libraries [41] with conserved U(1)
symmetry and an iterative local scheme, we can reach
�
max

⇡ 500, thus capturing a big part of the ES without
finite-bond e↵ects [39].
Fig. 1 illustrates the typical ES {�

k

} (ordered from
largest to smallest magnitude) as a function of the eigen-
value number k, for various system sizes L. Consistent
with our expectations (7), in the MBL phase (W = 5)
the ES exhibits clear power-law behavior. In all cases,
we target the eigenstates close to energy E = 0, which
is roughly in the middle of the many-body band. The
data is averaged over a few thousand disorder realiza-
tions for L  16, and over a few hundred realizations for
for L = 18, 20. For L = 30, we used �

max

= 200 and
1000 disorder realizations.

Note that, while we find excellent agreement between
ED and MPS results for the few largest Schmidt eigen-
values, the lowest Schmidt values obtained by MPS lie
slightly below the ED data for L = 20. This is an arte-
fact of our fixed bond dimension �

max

= 200, which
bounds the slope of the ES through its e↵ect on the small-
est Schmidt values. For the given �

max

, we expect the

�

disorder W

�k / 1
k�

 = 20 + ln2

G(L) / e�0L

perturbation theory

�k / 1
k� � ⇡ 4

ln 2



                      also: [Yu et al arXiv:1509.01244] [Lim&Sheng arXiv:1510.08145] 
                [Pollmann et al arXiv:1509.00483] [Kennes&Karrasch arXiv:1511.02205] 

MPS algorithm close to MBL transition

• Theoretically: % controls truncation error  

                      large % → MPS is ok close to MBL transition

• Practically:    MPS-based algorithm in MBL phase  
                     use ES as a very stringent test for DMRG:

/ 1/���1

 more details:  
[arXiv:1605.05737]

disorder W = 4
� = 400

disorder W = 5
� = 200



Estimates for the bond dimension

• Entanglement spectrum deviates at small $  

• Average bond dimension to converge Sent up to 1%: 
 
 
 
 
 
 
 

• Uses: DMRG close to MBL transition, probe MBL phase

disorder W = 4
� = 400

�

                                                        



Summary

• Scaling parameter for transition  
→logarithmic transport at transition

• Power-law entanglement spectrum in MBL  
→power % related to scaling of & 
→implementation of MPS algorithm close to transition 

• Global goal: delocalization transition & thermalization  

G = log

Vi,i+1

Ei � Ei+1

�k / 1
k�

disorder W = 5
� = 200

�

[arXiv:1605.05737]

[PRX 5, 041047 (2015)]
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