

Wir schaffen Wissen – heute für morgen

Thuong Nguyen (ICTP / SISSA) Paul Scherrer Institut (Villigen) and ICTP (Trieste) Markus Müller

Magnetoresistance in insulators close to the superconductor-insulator transition

Localization, Interactions and Superconductivity, Landau Institute, Chernogolovka, June 27-July 1, 2016

Outline

- Huge magnetoresistance peak near certain SI transitions: Origin of strongly non-monotonous R(B)?
 - Insulator: Inhom. mixture of localized pairs and single electrons;
 - Understanding features of the peak?
- Nature of transport in the insulator ?
 - Strongly disordered superconductors:
 - systems undergoing manybody localization??
 - Activated resistance in the Bose glass
 - GMR Peak: Interplay of interference and density of states effects!

Insulator: Giant magnetoresistance

Most studied material:

4 decades of research...

Buckley prize 2015...

Ever more puzzles and delights to come?

InOx

. . .

Hebard-Palaanen Gantmakher Kapitulnik, Mason Goldman Ovadyahu Shahar Sacepe, Chapelier (many more)

Insulator: Giant magnetoresistance

Giant magnetoresistance

Insulating behavior **enhanced** by local superconductivity!

Other systems - similar phenomena

Further evidence: Little Parks oscillations in weakly insulating ring of InO_x

Gurovich, Tikhonov, Mahalu, and Shahar (2015)

Oscillation period corresponds to charge 2e!

Road map of this talk

- I. Orbital magnetoresistance of bosons (& contrast with fermions)
- II. Activated magneto-transport in Bose insulator with long range Coulomb

III. Pair-to-electron crossover & MR peak

Magnetoresistance in Bose and Fermi insulators?

How are hard core bosons different from free fermions?

Model
$$H = \sum_{i} \varepsilon_{i} n_{i} - \sum_{\langle i,j \rangle} t_{ij} (b_{j}^{\dagger} b_{i} + b_{i}^{\dagger} b_{j}), \quad n_{i} = b_{i}^{\dagger} b_{i}.$$

Fermions
$$\{b_i, b_j\} = 0,, \quad \{b_i^{\dagger}, b_j\} = \delta_{ij}$$

P. W. Anderson (1958)

Hard core bosons (\leftrightarrow spin $\frac{1}{2}$)

$$[b_i, b_j] = 0, \quad [b_i^{\dagger}, b_j] = \delta_{ij}(2n_i - 1)$$

Krauth, Trivedi, Randeria; Feigelman, Ioffe, Kravtsov; Ioffe, Mézard, Feigelman; Syzranov, Moor, Efetov; Yu, MM

Model
$$H = \sum_{i} \varepsilon_{i} n_{i} - \sum_{\langle i,j \rangle} t_{ij} (b_{j}^{\dagger} b_{i} + b_{i}^{\dagger} b_{j}), \quad n_{i} = b_{i}^{\dagger} b_{i}.$$

Fermions
$$\{b_i, b_j\} = 0, , \{b_i^{\dagger}, b_j\} = \delta_{ij}$$

Hard core bosons (\leftrightarrow spin $\frac{1}{2}$)

Example: Localized Anderson pseudospins = doubly occupied or empty orbitals

M. Ma and P. A. Lee (1985), Kapitulnik and Kotliar (1985)

Localization length

Strong insulators: Hopping transport! - Localization length ξ?

Localization length

Fermions $G_{i,0}^R(t-t') = -i\Theta(t-t')\langle \{b_i(t), b_0^{\dagger}(t')\} \rangle$

Bosons $G_{i,0}^R(t-t') = -i\Theta(t-t')\langle [b_i(t), b_0^{\dagger}(t')] \rangle$

Generalized localization length (also interacting!)

$$\xi(\omega)^{-1} = -\lim_{\vec{r}_i \to \infty} \overline{\ln[|G_{i,0}^R(\omega)/G_{0,0}^R(\omega)|]/|\vec{r}_i - \vec{r}_0|}.$$

Free fermions: no features near E_F : $\xi(\omega) \sim \text{const.}$ What about bosons and/or interactions?

Locator expansion and forward
scatteringFermions $i\frac{d}{dt}b_i(t)$ J. Hubbard (1963):
Equation of motion for
Green's function! $(i\frac{d}{dt} - \varepsilon_i)G_{i,0}^R(t)$ $i\frac{d}{dt}b_i(t)$ $= \delta(t)\delta_{i,0} + i\Theta(t - t')\left\langle \left\{ \sum_{j \in \partial i} t_{ij}b_j(t), b_0^{\dagger}(t') \right\} \right\rangle$

Fourier transform → Anderson-Feynman sum over paths *Anderson (1958)* Forward scattering approximation: Sum over shortest paths!

$$\frac{G_{i,0}^{R}(\omega)}{G_{0,0}^{R}(\omega)} = \sum_{\mathcal{P}=\{j_{0}=0,\dots,j_{\ell}=i\}} \prod_{p=1}^{\ell} t_{j_{p-1},j_{p}} \frac{1}{\varepsilon_{j_{p}}-\omega}$$

Locator expansion and forward scattering

Fermions

Magnetoresistance: negative (Nguyen, Spivak, Shklovskii)

Path amplitudes: real with random signs! B-field: $t_{ij} \rightarrow te^{-i\phi_{ij}}$ makes destructive interference less likely $\rightarrow \xi$ and 1/R increase.

Forward scattering approximation: Sum over shortest paths!

Locator expansion and forward scattering

Bosons (hard core)

X. Yu, MM, Ann. Phys '13

Equation of motion

MM (EPL '13)

Bosons
(hard core)
MM (EPL '13)
X. Yu, MM, Ann. Phys '13
Equation of motion
for Green's function!

$$\left(i\frac{d}{dt}-\varepsilon_{i}\right)G_{i,0}^{R}(t) = \delta(t)\delta_{i,0}(1-2\langle n_{0}\rangle)$$

 $+i\Theta(t-t')\left\langle\left[(-1)^{n_{i}(t)}\sum_{j\in\partial i}t_{ij}b_{j}(t),b_{0}^{\dagger}(t')\right]\right\rangle$

Forward scattering: Sum over shortest paths, lowest order in t!

Sign difference Bosons/Fermions: Loop of two paths: Ring exchange of particles

$$\frac{G_{i,0}^R(\omega)}{G_{0,0}^R(\omega)} = \sum_{\mathcal{P}=\{j_0=0,\dots,j_\ell=i\}} \prod_{p=1}^{\ell} t_{j_{p-1},j_p} \underbrace{\operatorname{sgn}(\varepsilon_{j_p})}_{\varepsilon_{j_p}-\omega}$$

Locator expansion and forward scattering

Bosons (hard core)

Magnetoresistance: positivecf also Zhou, Spivak (1991)
Syzranov et al (2012)Path amplitudes: all positive at $(\omega \rightarrow 0)$!B-field: $t_{ij} \rightarrow te^{-i\phi_{ij}}$ destroys constructive
interference, ξ and 1/R decrease.

Forward scattering: Sum over shortest paths, lowest order in t!

Sign difference Bosons/Fermions: Loop of two paths: Ring exchange of particles

$$\frac{G_{i,0}^R(\omega)}{G_{0,0}^R(\omega)} = \sum_{\mathcal{P}=\{j_0=0,\dots,j_\ell=i\}} \prod_{p=1}^{\ell} t_{j_{p-1},j_p} \underbrace{\operatorname{sgn}(\varepsilon_{j_p})}_{\varepsilon_{j_p}-\omega}$$

Locator expansion and forward scattering

Bosons (hard core)

Magnetoresistance: positivecf also Zhou, Spivak (1991)
Syzranov et al (2012)Path amplitudes: all positive at $(\omega \rightarrow 0)$!B-field: $t_{ij} \rightarrow te^{-i\phi_{ij}}$ destroys constructive
interference, ξ and 1/R decrease.

Oscillations start with pos. MR: smoking gun for bosons!

Bosons vs fermions?

Bosons: Change in localization length is ~7 times bigger than fermions! Exponentially strong effect on resistance!

Magnetoresistance peak

One ingredient to MR peak in superconducting films:

Hebard+Palaanen, Gantmakher et al., Shahar et al, Baturina et al, W. Wu, Valles et al., Goldman et al.

Is that really the main ingredient? NO! See part III

Before turning to the Pair-electron crossover:

II. Transport puzzles in the Bose glass

Puzzles

- 1. Experiment: Simple activation in R(T); [and possibly precursor traces of MBL??]
- 2. Evidence for purely electronic transport mechanism
 R(T) = R(T_{electron}) not R(T_{phonon}) !

 Demonstrated via overheating instability of electrons
 → Phonon-less transport!

Shahar et al.; Kravtsov et al.

Mechanism?

D. Shahar, Z. Ovadyahu, PRB 46, 10971 (1992).

D. Kowal and Z. Ovadyahu, Sol. St. Comm. 90, 783 (1994).

MBL in the pair insulator?

Evidence for a Finite-Temperature Insulator

M. Ovadia,^{1,2} D. Kalok,¹ I. Tamir,¹ S. Mitra,¹ B. Sacépé,^{1,3,4} and D. Shahar^{1,*}

1. Interpretation:

Maybe just simple activation with anomalously small prefactor

$$R_0 \sim \frac{R_Q}{10^4}$$

[Expected from asymptotic "MBL" with "bubbles"]

MBL in the pair insulator?

Evidence for a Finite-Temperature Insulator

M. Ovadia,^{1,2} D. Kalok,¹ I. Tamir,¹ S. Mitra,¹ B. Sacépé,^{1,3,4} and D. Shahar^{1,*}

Insulating InO_x

Origin of simple activation?

• Gap in the density of states? A: NO! Too disordered systems! No Mott gap!

Why no variable range hopping?
A: Phonons are inefficient at low T.
Also: Would give too large prefactor R₀.

• Nearest neighbor hopping? A: NO! Inconsistent with the experimental prefactor of Arrhenius

Insulating InO_x

Origin of simple activation?

• Gap in the density of states? A: NO! Too disordered systems! No Mott gap!

Why no variable range hopping?
A: Phonons are inefficient at low T.
Also: Would give too large prefactor R₀.

• Nearest neighbor hopping? A: NO! Inconsistent with the experimental prefactor of Arrhenius

• Δ is not a depairing gap (pos. MR!)

Insulating InO_x

Origin of simple activation?

• Gap in the density of states? A: NO! Too disordered systems! No Mott gap!

Why no variable range hopping?
A: Phonons are inefficient at low T.
Also: Would give too large prefactor R₀.

• Nearest neighbor hopping? A: NO! Inconsistent with the experimental prefactor of Arrhenius

- Δ is not a depairing gap (pos. MR!)
- But: Boson mobility edge !? (suggested by Feigelman-Ioffe-Mezard)

Boson localization as fct of E?

 \rightarrow Hardcore bosons delocalize best at low energy!

 \rightarrow No mobility edge??

Consequence studied in detail for Mott-Anderson transition: Mobility edge in the insulator; mobility gap closes at transition

Amini, Kravtsov, MM, NJP 2014; see also Burmistrov et al. 2014

Consequence studied in detail for Mott-Anderson transition: Mobility edge in the insulator; mobility gap closes at transition

Essentially the same expected for SI transition of bosons with Coulomb

Mobility edge of bosons with Coulomb + magnetic field?

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^+ b_j^- + \text{h.c.} \right) + \sum_i \varepsilon_i n_i^- + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j^-$$

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^+ b_j^- + \text{h.c.} \right) + \sum_i \varepsilon_i n_i^- + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j^-$$

Defining a mobility edge in interacting systems

$$\mathbf{T} = \mathbf{0} \qquad \xi^{-1}(\varepsilon_0, B) = -\lim_{r_{0i} \to \infty} \frac{1}{r_{0i}} \ln \left| \frac{G_{0,i}(\omega, B)}{G_{0,0}(\omega, B)} \right|_{\omega \to \varepsilon_0}$$
$$\epsilon_c = \inf\{E | \xi(E) = \infty\} \ \mathbf{\omega} \ \mathbf{A}$$

• Well-defined *finite energy*
mobility edge
$$\varepsilon_c$$
 in insulators
in d>2 at T = 0

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^* b_j + \text{h.c.} \right) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$

Defining a mobility edge in interacting systems

• In d=2: *finite* energy excitations are localized!

BUT: crossover from weak to strong localization: Define:

Effective ε_c : Forward approx. diverges $\epsilon_c = \min\{E | \xi^{FSA}(E) = \infty\}$ [weak inelastic processes at T>0 suffice to really delocalize] Expect: $R(T) \approx R_0 \exp\left(\frac{\varepsilon_c}{T}\right)$

In d=2, at very low T: $\varepsilon_c(T \to 0) \to \infty$ How? Interesting open problem!

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^+ b_j^- + \text{h.c.} \right) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^* b_j + \text{h.c.} \right) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$

Coulomb gap

$$H = -t \sum_{\langle i,j \rangle} (b_i^+ b_j + \text{h.c.}) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$

Apply magnetic flux: oscillation of mobility edge!

If bath is bad: expect transport by activation to mobility edge!

Substantial oscillations with cusps

Comparison with fermions:

- Opposite, downward lobes
- Smaller amplitude

If phonon bath is bad: expect transport by activation to mobility edge!

Fermions:

Non-interacting electrons ↔ Coulomb glass

Comparison with fermions:

- Opposite, downward lobes
- Smaller amplitude
- **2 unequal** maxima per period: reflect Coulomb correlations!

If phonon bath is bad: expect transport by activation to mobility edge!

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^+ b_j^- + \text{h.c.} \right) + \sum_i \varepsilon_i n_i^- + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j^-$$

Defining a mobility edge in interacting systems

$$\mathbf{T} = \mathbf{0} \qquad \epsilon_c = \min\{E | \xi^{\text{FSA}}(E) = \infty\}$$

 What if insulation is so strong that forward approximation converges at all E? → no mobility edge → MBL??

NOT quite (but it may look like it!): ⁻⁴ -² ⁰_{ε̃(q²/a)}
MBL spoilers: 1. Coulomb (1/r) in d>3/2 [Burin]
2. hot bubbles; 3. d>1: rare ergodic spots might act as baths

Beyond the pure Bose glass:

III. Boson-Fermion crossover?

Include depairing!

Pairs and electrons: Antagonists increase the insulation!

Boson-Fermion crossover

Simple model for mixed pair / electron glass

• Each site can host 0, 1 or 2 electrons (spin up/down)

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z(n_{i\uparrow} - n_{i\downarrow}))$$

DisorderLocal attractionZeeman depairingRandom site properties: $P(\varepsilon) = \frac{1}{2W}\Theta(W - \varepsilon)\Theta(\varepsilon + W)$ $P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$

$$-\sum_{\langle i,j\rangle,\sigma} \left(t_1^{(ij)} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) - \sum_{\langle i,j\rangle} \left(t_2^{(ij)} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow} + \text{h.c.} \right)$$

Single electron and pair hopping

(At resulting phenomenological level: Some similarity with resistor model by Dubi, Avishai, Meir)

Boson-Fermion crossover

Simple model for mixed pair / electron glass

• Each site can host 0, 1 or 2 electrons (spin up/down)

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z(n_{i\uparrow} - n_{i\downarrow}))$$

DisorderLocal attractionZeeman depairingRandom site properties: $P(\varepsilon) = \frac{1}{2W} \Theta(W - \varepsilon) \Theta(\varepsilon + W).$ $P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$

$$-\sum_{\langle i,j\rangle,\sigma} \left(t_1^{(ij)} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) - \sum_{\langle i,j\rangle} \left(t_2^{(ij)} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow} + \text{h.c.} \right)$$

Single electron and pair hopping

Simplification: no long range Coulomb; purely local interaction
 [With Coulomb, but σ=0: non-universal Coulomb gap! - But: MR peak requires σ>0
 Mitchell, Gangopadhyay, Galitski, MM, 2012]

1. Solve classical part (trivial) \rightarrow density of states: $\rho_{pair}(E;B)$, $\rho_{single}(E;B)$

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z (n_{i\uparrow} - n_{i\downarrow}))$$

$$P(\varepsilon) = \frac{1}{2W}\Theta(W - \varepsilon)\Theta(\varepsilon + W). \quad P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$$

No dispersion in attraction ($\sigma = 0$): \rightarrow One species hard gapped; jump in R(B) at B_c = λ_0

1. Solve classical part (trivial) \rightarrow density of states: $\rho_{pair}(E;B)$, $\rho_{single}(E;B)$

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z (n_{i\uparrow} - n_{i\downarrow}))$$
$$B(\epsilon) = \frac{1}{2} O(W_{i\uparrow} \epsilon) O(\epsilon + W) = E(\epsilon) - \frac{1}{2} O((\lambda - \lambda_0)^2)$$

$$P(\varepsilon) = \frac{1}{2W} \Theta(W - \varepsilon) \Theta(\varepsilon + W). \quad P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$$

Widely distributed attraction

$$(\sigma > 0):$$

As B: $\uparrow \rho_{pair}(0) \downarrow$
 $\rho_{single}(0) \uparrow$
 \rightarrow main drive for MR peak

1. Solve classical part (trivial) \rightarrow density of states: $\rho_{pair}(E;B)$, $\rho_{single}(E;B)$

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z(n_{i\uparrow} - n_{i\downarrow}))$$
$$P(\varepsilon) = \frac{1}{2W} \Theta(W - \varepsilon) \Theta(\varepsilon + W). \quad P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$$

2. Treat hopping perturbatively on the classical background $\rightarrow \xi_{pair}, \xi_{single}$

$$-\sum_{\langle i,j\rangle,\sigma} \left(t_1^{(ij)} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) - \sum_{\langle i,j\rangle} \left(t_2^{(ij)} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow} + \text{h.c.} \right)$$

As B
$$\uparrow$$
: DOS effect: $\xi_{pair} \downarrow \\ \xi_{single} \uparrow$
B: can even drive an MIT at strong B! Forward approximation, neglecting virtual break-up of pairs

Ν

1. Solve classical part (trivial) \rightarrow density of states: $\rho_{pair}(E;B)$, $\rho_{single}(E;B)$

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z(n_{i\uparrow} - n_{i\downarrow}))$$
$$P(\varepsilon) = \frac{1}{2W} \Theta(W - \varepsilon) \Theta(\varepsilon + W). \quad P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$$

2. Treat hopping perturbatively on the classical background $\rightarrow \xi_{pair}, \xi_{single}$

$$-\sum_{\langle i,j\rangle,\sigma} \left(t_1^{(ij)} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) - \sum_{\langle i,j\rangle} \left(t_2^{(ij)} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow} + \text{h.c.} \right)$$

As
$$B_{perp} = B \sin\theta$$
 \uparrow : $\xi_{pair} \downarrow$ Forward approximation,
angle(θ)-dependence! ξ_{single} \uparrow Forward approximation,
break-up of pairs

1. Solve classical part (trivial) \rightarrow density of states: $\rho_{pair}(E;B)$, $\rho_{single}(E;B)$

$$H = \sum_{i,\sigma} (\varepsilon_i - \mu) n_{i,\sigma} - \sum_i (\lambda_i n_{i\uparrow} n_{i\downarrow} - BE_Z (n_{i\uparrow} - n_{i\downarrow}))$$

$$P(\varepsilon) = \frac{1}{2W} \Theta(W - \varepsilon) \Theta(\varepsilon + W). \quad P(\lambda) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$$

2. Treat hopping perturbatively on the classical background $\rightarrow \xi_{pair}, \xi_{single}$

$$-\sum_{\langle i,j\rangle,\sigma} \left(t_1^{(ij)} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) - \sum_{\langle i,j\rangle} \left(t_2^{(ij)} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow} + \text{h.c.} \right)$$

3. Assume a bath (always there!) → Mott variable range hopping at low T:

$$R(T) = \exp\left[\left(\frac{T_M}{T}\right)^{1/(1+d)}\right] ; \quad T_M = \min\left[T_M^{\text{pair}}, T_M^{\text{single}}\right] ; \quad T_M^{\alpha} = \frac{Cst.}{\rho_{\alpha}(E=0)\xi_{\alpha}^2}$$

Boson-Fermion crossover

Crossing of Mott temperature $\lambda_0 = 0.8W, \sigma = 0.4W, t_{1,2} = 0.05W$ $(-1)^{-1} (20)^{-1} (-1$

Analytical result for peak position ($u = \xi_{pair} / \xi_{single}$)

$$B_c E_Z = \frac{\lambda_0}{2} + \frac{\sigma}{\sqrt{2}} \operatorname{erf}^{-1} \left[\frac{\frac{u^2}{2} \operatorname{erf} \left(\frac{2(W-\mu) - \lambda_0}{\sigma\sqrt{2}} \right) - \operatorname{erf} \left(\frac{\lambda_0}{\sigma\sqrt{2}} \right)}{1 + \frac{u^2}{2}} \right]$$

Boson-Fermion crossover

Crossing of Mott temperature $\lambda_0 = 0.8W, \sigma = 0.4W, t_{1,2} = 0.05W$ \bullet ·P, $E_Z = W$ \bullet ·S, $E_Z = W$ \bullet ·S, $E_Z = W$

Asymmetric shape of peak: fermionic side steeper

$$\frac{d\ln\rho_{\text{pair}}}{d\ln B}\bigg|_{\text{peak}} \approx -\frac{1}{2}\frac{d\ln\rho_{\text{single}}}{d\ln B}\bigg|_{\text{peak}}$$

A. Johannson, D. Shahar et al., (2006)

Dependence on angle of B-field

 T_M

A. Johannson, D. Shahar et al., (2006)

Conclusions

- ξ of bosons shrinks in B-field, fermions inflate
- Effect of Coulomb gap:
 - → Bosonic mobility edge ("effective edge" in d=2)
 - → Magneto-oscillations of mobility edge: like exp. features
- MR peak results from antagonizing fermions and pairs: Hampering each other's transport & On top of that: opposite orbital MR

Angle dependence, asymmetry, peak position qualitatively reproduced by very simple, minimal model

• Open Q: Why is there activated transport ONLY on pair side??