## Anderson localization in QCD

#### Tamas G. Kovacs

Institute for Nuclear Research, Debrecen, Hungary



Chernogolovka, June 27, 2016

## Strong interaction exhibits Anderson transition

- Quantum chromodynamics strongly interacting quarks
- Energy scale 200 MeV 1 GeV
- Computer "experiments" lattice QCD simulation

#### Basic fields

- SU(3) gauge field  $A_{\mu}(x)$
- quarks  $\psi(x)$  Dirac spinor, SU(3) fundamental representation

#### Dynamics

- Action:  $S = \int d^4x \left[ \mathscr{L}_g[A(x)] + \overline{\psi}(x) \{ D[A(x)] + M \} \psi(x) \right]$
- D[A(x)] covariant Dirac operator
- Quantization path integral  $Z = \int \mathscr{D}\psi \mathscr{D}A e^{iS}$

#### How to make sense of this? The lattice

- Regularization: 4d continuum  $\rightarrow$  4d hypercubic lattice
- How to get rid of the lattice? Continuum limit
  - lattice spacing  $a \rightarrow 0$
  - mass<sup>-1</sup> =  $\xi$  (correlation length)
  - $\xi_{\text{lattice}} a = (\text{physical mass})^{-1}$  $\Rightarrow \xi_{\text{lattice}} \rightarrow \infty$
  - tune system to critical point
- Wick rotation:  $t \rightarrow -it$ 
  - $\bullet e^{iLt} \longrightarrow e^{-Ht}$
  - $Z = \int e^{iLt} \longrightarrow Z = \int e^{-Ht}$  stat. phys. partition sum
  - temporally finite box of size  $L_t \longrightarrow temperature T = 1/L_t$

# Lattice QCD

Partition function (integrating out quarks):

$$Z = \int \mathscr{D} \psi \mathscr{D} \bar{\psi} \mathscr{D} U e^{-S_{g}[U] - \bar{\psi} \{D[U] + M\}\psi}$$
$$= \int \mathscr{D} U det \{D[U] + M\} \cdot e^{-S_{g}[U]}$$

- Statistical physics system (4-dimensional, Euclidean)
- Dynamical variables:  $U_i \in SU(3)$  on lattice links
- Temperature:  $T = \frac{1}{L_t}$  ( $L_t$ : extension in Euclidean time)

#### Dirac operator: D[U]

- discretized differential op.
- nearest neighbor hopping random SU(3) phase
- random sparse matrix localization?

• cross-over at  $T_c$  where  $1/T_c = L_{tc} \approx$  correlation length

• transition at  $T_c \approx 170 \text{MeV}$  :



unfolded level spacing distribution 
$$s = rac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n 
angle}$$









## Integrated level spacing distribution



## Finite size scaling

$$I(\lambda,\mu,L) = f\left(L^{1/\nu}(\lambda-\lambda_{\rm c})\right)$$

Is it possible to choose v and  $\lambda_c$  to have data collapse?



## Finite size scaling





#### The exponent v

Use only systems larger than L<sub>min</sub> for the fit

• system sizes:  $L^3 = 24^3, 28^3, 32^3, 36^3, 40^3, 48^3, 56^3$ 



v compatible with 3d Anderson model in unitary class

M. Giordano, TGK, F. Pittler, PRL 112 (2014)

# The temperature controls the mobility edge

Localized modes appear around  $T_{c_1}$ 



Fit:  $\lambda_c 
ightarrow 0$  at T= 163(2) MeV  $pprox T_c$  or

cross-over to quark-gluon plasma

Free quarks at temperature T

- Antiperiodic temporal boundary condition
- $\rightarrow$  Gap in the Dirac spectrum:  $\pi T$  — lowest Matsubara mode

#### Interactions switched on; $T < T_c$

- $1/T > \xi$  (correlation length)
- Quarks "do not feel" the temporal boundary condition
- Matsubara picture does not apply  $\rightarrow$  no gap,  $\chi SB$

# Temporal twist determines the lowest eigenvalues

#### Interactions switched on; $T > T_c$

- $1/T < \xi$  (correlation length)  $\rightarrow$  quarks "feel" the b.c.
- Lowest Matsubara mode ∝ phase of temporal "twist"
- Temporal "twist":
  - $\pi$  boundary condition
- Polyakov loop can only decrease the twist
  - $\rightarrow$  eigenvalues move down
  - ightarrow Matsubara bound becomes fuzzy
  - $\rightarrow$  gap disappears, gets sparsely populated

#### $\pi T \longrightarrow \lambda_c$

## Analogy with the Anderson model

- High  $T \rightarrow$  dimensional reduction to 3d
- Local Polyakov loop  $\rightarrow$  on site random potential
  - disorder correlated
  - but correlation length finite
- Spatial gauge links  $\rightarrow$  hopping terms
- 3d effective model:
  - $\bullet \ \ \mathsf{P}\text{-loop} \ \ \to \ \ \mathsf{spin} \ \mathsf{model}$
  - spins  $\rightarrow$  disorder for Anderson model
  - exhibits same type of transition Giordano, TGK, Pittler, JHEP 2015, JHEP 2016

## Wigner-Dyson $\rightarrow$ Poisson

Unfolded level spacing distribution







#### Conclusions

#### Anderson transition in QCD at high T

- high T: dimensionally reduced  $4d \rightarrow 3d$
- mobility edge controlled by temperature
- role of Polyakov loop fluctuations
- v compatible with Anderson model
- multifractal analysis of eigenvectors confirms this Giordano, TGK, Ujfalusi, Pittler, Varga, PRD 2015

#### Phase transition or not?

- The transition to QGP is only a cross-over
- Have we found a genuine phase transition?
- No! In QCD no thermodynamic quantity is singular

# QCD-like model with a genuine chiral phase transition

The quark condensate and the mobility edge

QCD with staggered quarks on a coarse lattice



#### Localized modes correlate with P-loop fluctuations



## How to describe the transition?

- Random matrix models?
  - Power-law random banded matrices
  - Moshe-Neuberger-Shapiro model
  - Invariant ensemble with log potential
- Renormalization group description?
- Three "fixed points"?
  - Wigner-Dyson
  - Poisson
  - Critical
- Universality?