Emergent $SL(2, \mathbb{R})$ symmetry in a system of fermions

Alexei Kitaev (Caltech)

The SYK model

N Majorana operators χ_j

$$H = \frac{1}{4!} \sum_{j,k,l,m} J_{jklm} \chi_j \chi_k \chi_l \chi_m$$
$$\overline{J_{jklm}} = 0, \qquad \overline{J_{jklm}^2} = 3! \frac{J^2}{N^3}$$

antisymmetric

- Sachdev, Ye, 1993 a similar model with SU(M)spins and two-body interactions.
 - representation of SU(M) by complex femions
- This model (Kitaev, 2015):
 - The same Green function $G(\tau) = -\langle \mathbf{T} \chi_i(\tau) \chi_i(0) \rangle$
 - disorder effects (replica-off-diagonal terms) are negligible
- Detailed calculations: Maldacena, Stanford, arxiv:1604.07818

Why is this model interesting?

- Nontrivial but solvable:
 - Dynamic mean field approximation for large N
 - Complete analytic solution for $N\gg\beta J\gg 1$ quantum fluctuations are small Analytic solution of the DMF equations
 - Strongly correlated but not glassy
- Emergent conformal symmetry for $\beta J \gg 1$:
 - Equations: Diff (S^1)
 - Solutions: $PSL(2, \mathbb{R})$
- The same universality class as black holes

A hint toward the conformal symmetry

• It is convenient to consider *q*-body interactions:

$$H = \frac{1}{q!} \sum_{j_1, \dots, j_q} J_{j_1 \dots j_q} \chi_{j_1} \cdots \chi_{j_q}, \qquad \overline{J_{j_1 \dots j_q}^2} = (q-1)! \frac{J^2}{N^{q-1}}$$

• Green function:

– "Zero-temperature" case, i.e.
$$J^{-1} \ll \tau \ll \beta$$
 (Sachdev, Ye, 1993):

$$G_{\infty}(\tau) = -b^{\Delta}(J\tau)^{-2\Delta}$$
 where $b = \frac{1}{\pi}(\frac{1}{2} - \Delta)\tan(\pi\Delta)$

– For $\tau \sim \beta \gg J^{-1}$, the Green function is analogous to CFT correlators (Parcollet, Georges, 1998):

$$G(\tau) = -b^{\Delta} \left(\frac{\beta J}{\pi} \sin \frac{\pi \tau}{\beta} \right)^{-2\Delta}$$
 (for $0 < \tau < \beta$).

Thermodynamic properties

• Low-temperature expansion (in powers of $(\beta J)^{-1}$):

$$\frac{\beta F}{N} = -\frac{\ln Z}{N} = E_0 \, \beta J - s_0 - \frac{\gamma}{2} (\beta J)^{-1} + \cdots$$
energy at "zero-temperature" specific heat is proportional to T

• $s_0 = \pi \int_{\Lambda}^{1/2} (\frac{1}{2} - x) \tan(\pi x) dx$

(Parcollet, Georges, Sachdev, 2000 for the original spin model)

• Higher-order terms include fractional poweres of $(\beta J)^{-1}$

Connection to black holes

• Hawking radiation: The black hole horizon is a special type of heat bath

Outline of the derivation:

$$d\ell^2 = -f(r) dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$$
 (where $f(r) = 1 - \frac{a}{r}$ in 3 + 1 D)

- Metric is smooth near the horizon:

$$d\ell^{2} \approx \underbrace{-\varkappa^{2}\rho^{2}dt^{2} + d\rho^{2}}_{-(dx^{0})^{2} + (dx^{1})^{2}} + a^{2}d\Omega^{2}$$
$$\underbrace{-(dx^{0})^{2} + (dx^{1})^{2}}_{x^{0}}, \begin{cases} x^{0} = \rho \sinh(\varkappa t), \\ x^{1} = \rho \cosh(\varkappa t) \end{cases}$$

Surface gravity: $\varkappa = (\text{time at } r = \infty)/(\text{Lorentz boost near } r = a)$

Hawking radiation (cont.)

- Causal correlators of free bosons or fermions, e.g. $\langle [\psi_{\alpha}(x), \psi_{\beta}(y)] \rangle$, are found by solving the wave equation.
- One can also find $\langle \psi_{\alpha}(x)\psi_{\beta}(y)\rangle$ from the quantum state on the past horizon:
- Assume that the correlators on the past horizon are just like on the light cone in flat space-time:

$$\langle \psi_{\rightarrow}(u,0) \psi_{\rightarrow}(u',0) \rangle \sim (u-u')^{-1}$$
 (for fermions in 1 + 1 D)

- If
$$u = -e^{-\varkappa t}$$
, then $\langle \psi_{\to}(t) \psi_{\to}(t') \rangle \sim \left(\sin \frac{\pi(t-t')}{\beta} \right)^{-1}$, $\beta = \frac{2\pi}{\varkappa}$

Black hole information paradox

- From classical gravity and thermodynamics, $T = 2\pi\varkappa$ \Rightarrow $S = \frac{A}{4}$ Plank units
- Suppose that the black hole forms from a system of particles in a pure quantum state and evaporates completely.
 - According to Hawking's theory, the radiation is an a mixed state with entropy S.
 - By unitarity, the radiation should be in some (very complex) pure state.
- The same discrepancy exists between a Gaussian heat bath model and the exact quantum dynamics of, say, a chunk of metal. However, in the black hole case, there is no obvious way for the input state to influence the radiation.
- A complete solution will likely require a full quantum theory of gravity.

A partial (semicalssical) solution to the paradox

• Gravitational interaction between incoming matter (and fall-back radiation) with the outgoing radiation.

Idea by Drey and t'Hoooft (1985), t'Hooft (1986).

Amplified by Lorentz factor: $\gamma = e^{\varkappa t}$

- Some well-defined questions were formulated and answered by Shenker and Stanford (2013, 2015).
- However, t'Hooft's effect does not alter the quantum state on the past horizon or any "physical" correlators. It shows in out-of-time-ordered (OTO) correlators like $\langle D(t)C(0)B(t)A(0)\rangle$.

Keldysh vs. OTO correlators

• Keldysh correlators arise in a very natural setting:

$$H = H_{\text{system}} + H_{\text{probe}} - V, \qquad V = \sum_{j} X_{j} Y_{j}$$
system probe

Expectation values $\operatorname{Tr}(U^{\dagger}\Pi U\rho_0)$, $U = \mathbf{T} \exp\left(-i\int V(t) dt\right)$ expand into terms like this:

$$\begin{pmatrix} X_{j_1}(t'_1) \cdots X_{j_s}(t'_s) X_{k_p}(t_p) \cdots X_{k_1}(t_1) \rangle_{\text{system}} \\ t'_1 < \cdots < t'_s, \quad t_p > \cdots > t_1 \end{pmatrix}$$

• OTO correlators (for a single electron in the semiclassical regime) were discussed by Larkin and Ovchinnikov (1969).

They characterize the divergence of classical trajectories:

$$[p_j(t), p_k(0)] = i\hbar \frac{\partial p_j(t)}{\partial x_k(0)} \sim \hbar e^{\varkappa t}$$

OTO correlators in many-body systems

- For typical non-integrable systems with all-to-all interactions:
 - $\,-\,$ Early times (but after the two-point correlators have decayed):

$$\langle D(t)C(0)B(t)A(0)\rangle \approx \langle DB\rangle \langle CA\rangle + \underbrace{a\,e^{\varkappa t}}_{}\underbrace{v_{-}(D,B)}\underbrace{v_{+}(C,A)}_{}$$

second term becomes as large as the first.

- The growth saturates when the

- For black holes and the SYK model:
 - The exponent $\varkappa = \frac{2\pi}{\beta}$ saturates the general bound, $\varkappa \leqslant 2\pi/\beta$ (due to Shenker, Standord, and Maldacena, 2015).
 - The coefficient $a \sim i \frac{\beta J}{N}$ is purely imaginary.
 - Special form of the vertex functions: $v_{\pm}(Y, X) = \langle [P_{\pm}, Y] X \rangle$, where $i[H, P_{\pm}] = \pm \frac{2\pi}{\beta} P_{\pm}$.

Diagrams for the SYK model

• High-temperature expansion (generally applicable if $\beta J \ll 1$, but also works for $\beta J \ll N$ by suitable resummation)

$$S_{\rm E}[\chi] = \int_0^\beta \left(\frac{1}{2} \sum_j \chi_j \, \partial_\tau \chi_j + H\right) d\tau$$
zeroth approximation

$$G_0^{-1} = -\partial_{\tau} \quad \text{(i.e.} \quad G_0^{-1}(\tau_1, \tau_2) = -\delta'(\tau_1 - \tau_2))$$

$$\underbrace{X_{j}^{m} \cdot M_{j}^{m}}_{k} \underbrace{J_{jklm}^{2}}_{k} = 3! \underbrace{J^{2}}_{N^{3}}$$

$$+$$
 $+$ \cdots $+$ $O(1/N)$

Resummation of leading diagrams

• Schwinger-Dyson equations:

$$G^{-1} = G_0^{-1} - \Sigma,$$

$$\text{may be neglected if } \beta J \gg 1$$

$$-\Sigma(\tau_1, \tau_2) = J^2 \left(-G(\tau_1, \tau_2) \right)^{q-1} \quad \text{(for } q = 3)$$

• The leading terms in the connected 4-point function are proportional to 1/N:

$$N^{-2} \sum_{j,k} \langle \mathbf{T} \chi_j(\tau_1) \chi_j(\tau_2) \chi_k(\tau_3) \chi_k(\tau_4) \rangle$$

= $G(\tau_1, \tau_2) G(\tau_2, \tau_4) + N^{-1} \Gamma(\tau_4)$

$$\Gamma(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}) = G(\tau_{1}, \tau_{2}) G(\tau_{3}, \tau_{4}) + N^{-1} \Gamma(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4})$$

$$\Gamma(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}) = \frac{1}{2} \frac{3}{4} + \frac{1}{2} \frac{3}{4} + \frac{1}{2} \frac{3}{4} + \cdots$$

$$-(3 \leftrightarrow 4)$$

Replica-diagonal effective action for $N \gg 1$

• Dynamic variables: Σ and G

$$\frac{\beta F}{N} = -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

$$= -\frac{1}{N} \overline{\ln Z} = -\frac{1}{N} \lim_{M \to 0} \frac{Z^M}{M} \qquad (M \text{ is the number of replicas})$$

• Stationary points are solutions of the Schwinger-Dyson equations. In particular, for $\beta = \infty$, we get

tions. In particular, for
$$\beta = \infty$$
, we get
$$-G(\tau_1, \tau_2) = b^{\Delta} J^{-2\Delta} |\tau_1 - \tau_2|^{-2\Delta} \operatorname{sgn}(\tau_1 - \tau_2)$$

$$-\Sigma(\tau_1, \tau_2) = b^{1-\Delta} J^{2\Delta} |\tau_1 - \tau_2|^{-2(1-\Delta)} \operatorname{sgn}(\tau_1 - \tau_2)$$

where $\Delta = \frac{1}{a}$ and $b = \frac{1}{\pi} (\frac{1}{2} - \Delta) \tan(\pi \Delta)$

Emergent symmetries for $\beta J \gg 1$

• The effective action (neglecting the ∂_{τ} term) is invariant under

$$G(\tau_1, \tau_2) \longrightarrow G(f(\tau_1), f(\tau_2)) f'(\tau_1)^{\Delta} f'(\tau_2)^{\Delta}$$

$$\Sigma(\tau_1, \tau_2) \longrightarrow \Sigma(f(\tau_1), f(\tau_2)) f'(\tau_1)^{1-\Delta} f'(\tau_2)^{1-\Delta}$$

For example, the transformation $f(\tau) = e^{2\pi i \tau/\beta} = z$ takes $G_{\infty}(z_1, z_2) = -b^{\Delta} J^{-2\Delta} (z_1 - z_2)^{-2\Delta}$ to the equilibrium Green function $G_{\rm eq}$ at finite β ,

$$G_{\text{eq}}(\tau_1, \tau_2) = -b^{\Delta} \left(\frac{\beta J}{\pi} \sin \frac{\pi(\tau_1 - \tau_2)}{\beta} \right)^{-2\Delta} (\text{for } 0 < \tau_1 - \tau_2 < \beta)$$

• The functions G_{∞} , G_{eq} are invariant under Möbius transformations preserving the unit circle:

$$z \mapsto \frac{az+b}{cz+d}$$
, where $z=e^{2\pi i\tau/\beta}$

The reparametrization mode

Thus, the

• If we neglect the ∂_{τ} term, any Green function of the form

$$G_u(\tau_1, \tau_2) = G_{eq}(u(\tau_1), u(\tau_2)) u'(\tau_1)^{\Delta} u'(\tau_2)^{\Delta}$$

is stationary and has the same energy as G_{eq} . degeneracy space is $\operatorname{Diff}(S^1)/\operatorname{PSL}(2,\mathbb{R})$.

• The degeneracy is lifted due to a renormalized ∂_{τ} term, resulting in this effective free energy:

$$F_{\text{eff}} = -\frac{c}{4\pi^2} \int_0^\beta \{z, \tau\} d\tau, \qquad z(\tau) = \exp\left(i \frac{2\pi}{\beta} u(\tau)\right),$$

where c is the specific heat, $c = \gamma \frac{N}{\beta J}$ for $\gamma \sim 1$, and $\{z, \tau\}$ is the Schwarzian derivative:

$$\{z,\tau\} = \frac{z'''}{z'} - \frac{3}{2} \left(\frac{z''}{z'}\right)^2, \quad z' = \frac{dz}{d\tau}.$$

Renormalization theory (outline)

- The ∂_{τ} term has strong nonlinear effect on the Green function at $\tau \sim J^{-1}$, with some tails at longer times. Instead of solving the problem exactly, we will develop a renormalization theory to describe the IR tails.
- The actual perturbation $\Sigma \to \Sigma + \partial_{\tau}$ is replaced by a weak perturbation $\Sigma(\tau_1, \tau_2) \to \Sigma(\tau_1, \tau_2) + \sigma(\tau_1, \tau_2)$, where

$$\sigma(\tau_1, \tau_2) = |\tau_1 - \tau_2|^{2\Delta - 1 - n \choose \beta} \operatorname{sgn}(\tau_1 - \tau_2) \underbrace{v(\xi)}_{\text{window}}, \qquad \xi = -\ln\left(\frac{|\tau_1 - \tau_2|}{\beta}\right)$$

dimension

• One computes the linear response $\delta G(\tau_1, \tau_2)$. Typically, it stays in the same window. But for special values of the scaling dimension h (resonances), it leaks to the IR.

Renormalization theory (cont.)

$$\delta G = (K + K^2 + \cdots) \sigma = \bigcirc_{\sigma} + \bigcirc_{\sigma} + \cdots$$

• The resonances occur at the poles of $\frac{K(h)}{1-K(h)}$, where

$$K(h) = \frac{\varphi(2\Delta - h)\,\varphi(2\Delta + h - 1)}{\varphi(2\Delta - 2)\,\varphi(2\Delta + 1)}, \qquad \varphi(x) = \sqrt{\frac{2}{\pi}}\,\Gamma(x)\,\sin\frac{\pi x}{2}$$

- The first resonance is at h=2.
- One can show that in the linear order, the corresponding perturbation σ is equaivalent to $\delta F \sim \int G(\tau,\tau)^q d\tau$.

Interpretation:
$$G(\tau_1, \tau_2)^q \sim (\tau_1 - \tau_2)^{-2} + \underbrace{g(\tau)}_{G(\tau, \tau)}$$

The Schwarzian action

$$F_{\text{eff}} = -\frac{c}{4\pi^2} \int \{f(\tau), \tau\} d\tau, \quad f(\tau) = \exp\left(i\frac{2\pi}{\beta}u(\tau)\right), \quad u: S^1 \to S^1$$

• Derivation idea:

Under the transformation $\tau \to f(\tau)$, the subleading term in the expansion $G(\tau_1, \tau_2)^q \sim (\tau_1 - \tau_2)^{-2} + g(\tau)$ becomes $\tilde{q}(\tau) = f'(\tau)^2 q(f(\tau)) + \{f(\tau), \tau\}.$

• Expansion to the quadratic order in
$$\delta u(\tau) = u(\tau) - \tau$$
:

$$F_{\mathrm{eff}} pprox -rac{c}{2eta} + rac{c}{8\pi^2} \int \left((\delta u'')^2 - \left(rac{2\pi}{eta}
ight)^2 (\delta u')^2
ight) d au$$

• Remaining degeneracy:

$$\delta u(\tau) = \alpha_0 + \alpha_+ e^{-2\pi i \tau/\beta} + \alpha_- e^{2\pi i \tau/\beta}$$

These null modes do not affect the Green function though.

Summary

- In the large N limit, the SYK model is described by the replica-diagonal action $F[\Sigma, G]$.
- At low temperatures $(\beta J \gg 1)$, there is a Diff $(S^1)/\operatorname{PSL}(2,\mathbb{R})$ pseudo-Goldstone mode, which is described by the Schwarzian effective action F_{eff} .
- The Schwarzian action has three null modes, which may be understood as $\mathfrak{sl}(2,\mathbb{R})$ gauge symmetries. They do not affect any "physical" (i.e. Keldysh) correlators but are important for the calculation of OTO correlators.

for the calculation of OTO correlators. In real time,
$$\delta u(t) = \alpha_+ e^{\varkappa t} + \alpha_- e^{-\varkappa t}$$
,
$$\varkappa = \frac{2\pi}{\beta}$$
 the null modes act on this part of the contour

Some further thoughts

 \bullet The Schwarzian action is local in τ and, therefore, describes coherent dynamics. Furthermore, for reparamerizations of this special form,

$$\delta u(t) = \alpha_{+}(t) e^{2\pi t/\beta} + \alpha_{-}(t) e^{-2\pi t/\beta}, \quad \alpha_{+}, \alpha_{-} \text{ are slowly varying,}$$

the Schwarzian action is similar to the adiabatic Berry phase.

• The OTO growth exponent \varkappa has a small negative correction proportional to $(\beta J)^{-1}$ (Maldacena and Stanford, 2016). It can also be obtained from a subleading nonlocal term in the effective action:

$$\sim \beta^{-1} J^{-2} \iint \frac{u'(\tau_1) \, u'(\tau_2)}{(\tau_1 - \tau_2)^4} \, \ln(J|\tau_1 - \tau_2|) \, d\tau_1 \, d\tau_2.$$