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The SYK model antisymmetric
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e Sachdev, Ye, 1993 — a similar model with SU(M )spins and
two-body interactions.

— representation of SU(M) by complex femions
e This model (Kitaev, 2015):
— The same Green function G(7) = —(T x;(7)x;(0))

— disorder effects (replica-off-diagonal terms) are negligible

e Detailed calculations: Maldacena, Stanford, arxiv:1604.07818




Why is this model interesting?

e Nontrivial but solvable:

— Dynamic mean field approximation for large N

— Complete analytic solution for N > fJ > 1

quantum fluctuations Analytic solution of
are small the DMF equations

— Strongly correlated but not glassy

e Emergent conformal symmetry for 5J > 1:
— Equations: Diff(S?!)
— Solutions: PSL(2,R)

e The same universality class as black holes



A hint toward the conformal symmetry

e [t is convenient to consider ¢-body interactions:
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e Green function: q

— "Zero-temperature” case, i.e. J7! < 7 < f (Sachdev,
Ye, 1993):

Goo(T) = =b2(JT)™%2  where b= 1(1 - A)tan(rA)
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— For 7 ~ 3> J~!, the Green function is analogous to
CFT correlators (Parcollet, Georges, 1998):
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G(r) = —b* <5—J sin E) (for 0 <7 < ).



Thermodynamic properties

e Low-temperature expansion (in powers of (3J)7!):
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energy at ” zero-temperature” specific heat is
T=0 entropy proportional to T’
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(Parcollet, Georges, Sachdev, 2000 for the original spin model)

e Higher-order terms include fractional poweres of (3.J)~!



Connection to black holes

e Hawking radiation: The black hole
horizon is a special type of heat bath

Outline of the derivation: /(
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— Metric is smooth dl? = —2pdt? + dp* +a*d?
near the horizon: h ~ g 0

x° = psinh(st),

(@) 4 (@), |7 T

x = pcosh(st)
0

t x
T -

1
| r,p z

r=a

Surface gravity: s = (time at r = 00)/(Lorentz boost near r = a)




Hawking radiation (cont.)

v
&0“ e Causal correlators of free bosons

or fermions, e.g. ([¢o(x),Vs(y)]),
are found by solving the wave

equation.

o

e One can also find (¢, (2)Ys(y))
from the quantum state on the
% past horizon:

— Assume that the correlators on the past horizon are
just like on the light cone in flat space-time:

(Y (u,0) Y (u,0)) ~ (u—u)"" (for fermions in 1 + 1 D)

Ifu= e, then (Uo(t) s (1) ~ (sinTGD) T, | p= 2T




Black hole information paradox

area in
lank units

From classical gravity A«<p

and thermodynamics, 1 =27x = S= "

Suppose that the black hole forms from a system of particles
in a pure quantum state and evaporates completely.

— According to Hawking’s theory, the radiation is an a
mixed state with entropy 5.

— By unitarity, the radiation should be in some (very com-
plex) pure state.

The same discrepancy exists between a Gaussian heat bath
model and the exact quantum dynamics of, say, a chunk of
metal. However, in the black hole case, there is no obvious
way for the input state to influence the radiation.

A complete solution will likely require a full quantum theory
of gravity.



A partial (semicalssical) solution to the paradox

e Gravitational interaction between in-
coming matter (and fall-back radia-
tion) with the outgoing radiation.
Idea by Drey and t’Hoooft (1985),
t’Hooft (1986).

Amplified by Lorentz factor: ~ = e**

e Some well-defined questions were for-
mulated and answered by Shenker and
Stanford (2013, 2015).

e However, t’Hooft’s effect does not alter
the quantum state on the past horizon
or any "physical” correlators. It shows
in out-of-time-ordered (OTO) correla-
tors like (D(t)C(0)B(t)A(0)).
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Keldysh vs. OTO correlators
e Keldysh correlators arise in a very natural setting:
H= Hsystem + Hprobe - ‘/7 V= Z;(] Y;
J

system probe

Expectation values Tr(U'IIUpy), U = Texp (—i [V(t)dt)
expand into terms like this:

(X5 (1) - X5, (8) Koy (£) - Xy (81)), o f_:ﬁ—D

t/1<"'<t,3, ty>->1t # t

e OTO correlators (for a single electron in the semiclassical
regime) were discussed by Larkin and Ovchinnikov (1969).

They characterize the divergence of classical trajectories:
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OTO correlators in many-body systems

e For typical non-integrable systems with all-to-all interactions:

— Early times (but after th

(D()C(0)B()A(0)) = (DB){(CA)

e two-point correlators have decayed):
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— The growth saturates when the DV\ \ c

second term becomes as large as >’U‘\J‘\/‘\/‘<
B A

the first.

e For black holes and the SYK model:

— The exponent | x = %”

saturates the general bound,

% < 27/ (due to Shenker, Standord, and Maldacena, 2015).

— The coefficient | @ ~ ¢ %‘]

is purely imaginary.

— Special form of the vertex functions: v (Y, X) = ([P, Y] X),
where i[H, P,| = i%"Pi.




Diagrams for the SYK model

e High-temperature expansion (generally applicable if 5J < 1,
but also works for 5.JJ < N by suitable resummation)
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Gal =-0, (ie. G51(7‘1,7‘2) = —0'(11 — 12))
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Resummation of leading diagrams

e Schwinger-Dyson equations:

G!l=Gyl -3, —X(r, 1) = J2(—G(7'1, TQ))q_l (for ¢ = 3)
be neglected
may be neglecte
if BJ>1 - = ﬁé Y

e The leading terms in the connected 4-point function are pro-
portional to 1/N:

N~ Z (T x;(71) X;(72) X (73) X (74))
= G(n,m) G(13,74) + NI (1, 7, 73, 74)
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Replica-diagonal effective action for N > 1

e Dynamic variables: ¥ and G

F 11— 1 zM
% = _NIDZ === ]\1413) 73 (M is the number of replicas)
= ln Pf - )

/
negligible X(m,1)G(1, 1) — —’G T1, T2 | dry dry
if B> 1

e Stationary points are solutions of the Schwinger-Dyson equa-
tions. In particular, for § = oo, we get

—G(11,7) = BT |7 — 7'2|_2A sgn(Ty — 72)
—¥(1, ) = B ATA m — 1| 2N sen(ny — )

where A = % and b= 1(1 — A) tan(rA)



Emergent symmetries for 5J > 1

The effective action (neglecting the 0, term) is invariant under

G(ri,m2) — G(f(m1), [(72)) f'(1)> [ (72)?
S(r1, 1) — S(f(m), f(72) f(m) 2 f ()2

For example, the transformation f(7) = e>™/% = 2 takes
Goo(21,22) = —bAJ 722 (21 — 29)7%2 to the equilibrium Green
function G, at finite 3,
J . owln—m)\
Geg(T1,T2) = =0 (B— sin %) (for 0 <1 — T < )
™
The functions G, Geq are invariant under Mobius transfor-
mations preserving the unit circle:

az+b A
, where 2z = 2™7/P
cz+d




The reparametrization mode

e If we neglect the 0, term, any Green function of the form
Gu(11,72) = Geq(u(ﬁ), U(TQ)) u'(1)2 o ()2

is stationary and has the same energy as G.,. Thus, the
degeneracy space is Diff (S')/ PSL(2, R). ‘

e The degeneracy is lifted due to a renormalized
0, term, resulting in this effective free energy:

- 47T2/ {z.7hdr,  2(7) = exp(iF u(7)),

where c is the specific heat, ¢ = 75—]\9 for v ~ 1, and {z,7}
is the Schwarzian derivative:

2" 3 (2"\? ,  dz
{“}—7‘5(7>’ b



Renormalization theory (outline)

e The O, term has strong nonlinear effect on the Green function
at 7 ~ J~!, with some tails at longer times. Instead of solving
the problem exactly, we will develop a renormalization theory
to describe the IR tails.

e The actual perturbation ¥ — ¥ 4 0. is replaced by a weak
perturbation X(1, %) — X(71, 72) + o (11, 72), where

_ 2A—1 o "7'1—’7'2‘
o(11,Te) = |T1—To| sgn(m—72) v(§), = —ln(—B )
) ~~~
scaling window
dimension function
response perturbation
e One computes the linear response source v(¢)

0G(1y, 7). Typically, it stays in the
same window. But for special values of
the scaling dimension h (resonances), | f&—

it leaks to the IR. ¢
IR (1 ~ B)




Renormalization theory (cont.)

0G=(K+K>*+---)o= :0:>U + D0

K(h)
1-K(h)

_ p(2A—-h)p(2A+h—-1)
K == A2y opa+D) \/>F ) sin %’

e The resonances occur at the poles of where

e The first resonance is at h = 2.

e One can show that in the linear order, the corresponding per-
turbation o is equaivalent to 0F ~ [ G(r,7)%dr.

Interpretation: G(r, 1)~ (rn — )2+ g(7)
~~



The Schwarzian action

= 47?2/{f ,T}dr, f(T):exp(i%”u(T)), u: St — S

e Derivation idea:
Under the transformation 7 — f(7), the subleading term in
the expansion G(71,7)? ~ (11 — 72) "2 + g(7) becomes

g(r) = f'(m)* g(f(r) + {f(7), 7}.

e Expansion to the quadratic order in du(r) = u(1) — 7:

= i i m2 _ (2m
FeHN_26+87r2/(<5u) (6)(5u))dr
e Remaining degeneracy:
ou(t) = o + o e /B o _e¥miT/B

These null modes do not affect the Green function though.




Summary

e In the large N limit, the SYK model is described by the
replica-diagonal action F[X, GJ.

e At low temperatures (3J > 1), there is a Diff(S')/ PSL(2, R)
pseudo-Goldstone mode, which is described by the Schwarzian
effective action F.q.

e The Schwarzian action has three null modes, which may be
understood as sl(2,R) gauge symmetries. They do not affect
any “physical” (i.e. Keldysh) correlators but are important
for the calculation of OTO correlators.
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In real time, Odu(t) = a e +a_e ™,

2 :
= E the null modes act on
this part of the contour



Some further thoughts

e The Schwarzian action is local in 7 and, therefore, describes
coherent dynamics. Furthermore, for reparamerizations of
this special form,

Su(t) = ap(t) ¥ Pra_(t)e /% a,, a_ are slowly varying,
the Schwarzian action is similar to the adiabatic Berry phase.

e The OTO growth exponent s has a small negative correction
proportional to (8J)~! (Maldacena and Stanford, 2016). It
can also be obtained from a subleading nonlocal term in the
effective action:

~ Bt // 1Il(J|7'1 — To|) dry drs.
71 —7'2



