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ABSTRACT

The Sherrington-Kirkpatrick model of a spin glass is solved by a mean field
technique which 15 probably exact in the limit of infinite range interactions. At and
above T’ the solution 15 identical to that obtained by Sherrington and Kirkpatrick
(1975) using the n—0 replica method, but below T'. the new result exhibits several

differences and remaing physical down to T'=10.

The Sherrington—Kirkpatrick Hamiltonian

—ZJ,2
= ZJijSiSj Prob (J;;) e exp(-—iﬁi)
(i)
with a variance J*/Z where Z is the number of neighbours of each spin,

presumed effectively infinite ; we work in the limit ¥ >Z> 1.



$ 2. THE HIGH TEMPERATURE REGION

For T>T, we make a high temperature series expansion for the free
energy, using the standard identity

Thus exp (BJ;8:8;) = cosh BJ;(1+ 8,8, tanh BJ ;). (3)

—BF ={In Trexp (—B#)>,

=<{In {]—[ cosh BJ;;);+{In Tr H (1+T,8:8)),
ij) ij

= NBJ2/4 + O(N|Z)
+{nTr 1+ ZT.U S+t Y TuTuSS,88, - Dn (4)

i) Lif) = (kD)

where T',;=tanh BJ,;. The expansion may be analysed diagramatically (each
line representing a 7';;), noting the following conditions for a non-vanishing
diagram :

(@) There must be an even number of lines at each vertex.
(b) No line may be double before taking the logarithm.
(c) Every line must be double after taking the logarithm (because (J) =0).

F=XNf,+(N[Z)f,+lower order,
* s fo=—=TIn Z—JEMT,

fi=— 17T In (1 - B2J2) + non-singular part.

E @ We note that the divergent part f, is intri sically positive

(b) + -

.4
4 -

the free energy below 3

T, is greater than an analytw continuation of the high temperature result,



Below 7', we must introduce a mean field in order to reconverge the series
for . We employ the usual identity

Tr exp (— B3#)=Tr exp (— B, )exp (BHy—BH)> ., (6)

where 5, is a soluble mean field Hamiltonian which is to be used in evalua-
ting the diagrams generated by exp (85, — 85¢). An obvious ansatz is

(P9 —H )ij = (S, —my) (S; —my) (7)
so that
(0)s; = o5 (mym; — myS; —mS;)

where m, is the mean spin on the ith site, to be determined self-consistently
by the condition

D o= (8)

Ignoring the perturbation J# —3#, leads to the appealing (but incorrect)
mean field equation
hi= Y Jym;=T tanh—! m, (9)
i

In the Bethe method, we consider a ‘ cluster ' of a central site 0 and all
its neighbours j. On the neighbours j we assume mean fields h; which, for
a Cayley tree, are the only effect their neighbours can have on them. Using
the smallness of Jy; («cZ~Y%), it is easy to arrive at the following expressions
for m, and m; :

my=tanh 8 J,. tanh Sk,
j (10)
m;=tanh Bh; + moBJy,(1 —tanh® Bh;).



my=tanh 8 J,. tanh A,
! (10)
m; =tanh Bh; + moBJ (1 —tanh?® Bh,).

We may now eliminate the k;s (again using the smallness of J;), obtaining the
fundamental equation

Y Joms—meB Y Jo* (1 —m;2) = T tanh=" m, (11)
] ]

which supplants the incorrect eqn. (9), and must, of course, be valid for any
choice of site 0. The correction term proportional to m, is more readily
understood upon realizing that S(1—m;?) is the single-site susceptibility, x;,
as may easily be proved. Equation (11) may thus be written

my=tanh B ¥ Jo;(m; —meJ o;x;) (12)
]

and the second term on the right-hand side is seen as the response of site j
to the mean spin on site 0; this must be removed from m; when computing

My

Fyp=— Z S ymom; — 38 Z S —mE) (1 —mE

(i) (17)

+37 2 [(1+m) In {(14+m)+ (1 —m;) In (1 -m,)]  (13)

As it must, direct differentiation of eqn. (13) gives eqn. (11). Additionally,
eqn. (13) is quite physically transparent : the first term is the internal energy
of a frozen lattice ; the second term is the correlation energy of the fluctua-
tions, and is just the NJ2/4T term of egn. (5), modified for the effective
‘freedom ’, 1 —m,?, of each spin; and the last term is the entropy of a set of
Ising spins constrained to have means m,.



Alternative derivation (Dotsenko,Feigelman & Ioffe 1990)



Instead of deriving the MF eguations of state, we prefer to derive the
free-energy functional of »2, that we shall use in subsequent Sections.
‘The variation of this functional of m, yields the equations of state (the
TAP equations). To derive the effective functional of new variables mi,,
we introduce a new term with Lagrange multiplier A, into the Hamil-
tonian (2.1.1), which ensures the condition {a,} = m,:

Hye = H+ Hy, H,= D (o;—m)h,. (2.4.1)

We then expand the free-energy functional F = -7 In {I,
exp ( — H_/N} for the full interacting system as a series of cumulants in
the interaction energy H:

1 1
—BF = —8F, + 2, — (—B)"c,(H),
=1 -

8F, = >, \m; — In cosh \,. (2.4.2)
The first cumulants ¢, () are *
H) = {H)., — 1
E‘I( ] i }[- $ ﬂ..F= E?’l.;mf_ln Eﬂsh}ﬁ'—zuruﬂrﬂj
c(H) = {H*)| — (H)i, (2.4.3) i 247

e(H) = {((H - (H})),

where {. . .}, denotes the average with respect to the reference Hamil-
tonian A . The expansion (2.4.2), (2.4.3) was introduced by Kirkwood 1 ’ -~
[27] in 1938 as the expansion for the Ising model. The Lagrange para- i} Z Sl = uiw),

meter A can be expressed through the condition: & where g, = tanh \;.

1
D E E »-ﬂj-f;}[] —Fﬂﬂfﬂt
ink,j



aF/a\, = 0. (2.4.4)

|
BF = E Am; = In cosh &; — 3 EJUHM;
i b

l
-5 20 Julull = i 24.9)
fEkf

1
N E E I.Ei{]- _#I;.F'L_f?.}!
iy f
where u, = tanh A,. Inserting (2.4.5) into (2.4.4), we get

m=p— 2, (1=pdlyn + 0. (2.4.6)
-

Finally excluding y,; from (2.4.5) and (2.4.6), we obtain the TAP free-
energy functional

1
F == 3 Jymm, = o 3 T = mA) (1 = i)
2 i 4T fJ

Sum over i,j I l 14+ m, = i

+ — {1+m)In +{1—m;)In (2.4.7)
In TAP notations 2 Z,: : 2 2
1t was sum over

+ E hom,.

pairs <i,j> thus
factor 2



Expansion over m near T =
-8 Z Jym; + JB°m; = O(mj),  LJG=J~ my[1 = BJ, + (BIY] = O(m)).
p(E)=(4—E*)"(2n)"'0(4—E").

For T near T, we expect m, to be small and similar to the eigenvector M,
belonging to the largest eigenvalue ()0, =2J of the matrix J; :

Y JiM;=2JM, (15)

1
Slide 5
We first linearize eqn. (11), approximating ):J,,J x; by J2X:

¥ Jymy =BT —mBm, + T(mg+m3[3+m3|5+ .
m,=M+dm;, qg=M;? M; is orthogonal to &m;.

jy, —
[

(2] = BT - T)g=(T ~pJ¥)g* +3T¢* + T 3, M 38m;+0(¢").



The term in &m, is essential—there is no solution without it—but is difficult
to estimate. Analysing the projection of eqn. (16) orthogonal to M; by a

combination of eigenvector expansions and numerical estimates, we find
finally

(2] =JYT = T)g— (T =T T)g?+ (2T%J - 3T)g*=0. (20)

Near T.=/J this equation has a double zero at  g=m2=1-T|T,

NN TR, -
\/ Flay = ¢ (+a) - <7

N\

7

5
//

N

12
T M ms.
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Alternative derivation (Dotsenko,Feigelman & Ioffe 1990)

m = agb(i) + 6m, = agl(i) + D) a0, 0),  (4.1.6)

o

where y, corresponds to the largest E, > E,, and we restrict ourselvesto
Ising spins (7= 1), Substitution of (4.1.6) into (4.1.3) vields

I 1 .
s g Zja.wg(::: Yav.@)| +=3ere2-E)a2
2 2 e 1] 2’ a i

wherer=T-T,=T- landg = a;/N.’

Minimization over a leads to

o]
3

e

9 4 gt —F Z”D‘r"{f{f \'!” (/)

] | ]

Fim} =3 T'g + 2 rq* + 4 ¢~ Z a1 g (i, Nagys()), q= |t

p(E) dE
gﬁ:ﬁ#] 2-E+7

1
- 5;‘,- + (). Flay} = E (r+g) - 73 e

11



Marginal stability condition
A J Bray and M A Moore
J. Phys. C: Solid State Phys., Vol. 12, 1979,

Evidence for massless modes in the ‘solvable model’ of a L4417

spin glass
For stable states

Ay, = GXBF)/emom, eleenvalues of the matrix A are positive,

_ N , ~ . -
= —pJ,; + (ﬁz ST —mg) + (1= m) 1)‘5;;' -Eﬁzjf}mimj; replacing ¥, J%(1 — m?) by J¥(1 — g)

susceptibility matrix y,; = ém,/dh, (A7), = By, = (5.8
the matrix Green function is G(1) = (Al — A)~? p() = (N©) "' Im Tr G(4 — 1d)

Gy = f = fBIIS + FBISBI N+ .. Si= (A== (1-m)]"

1s the ‘locator’.
Gy = fi+ PG + PGS + ... = ([~ — BIG (0

where G = N7'Y..G,, is the averaged Green function.

[ 1

12



p(h) = (Um)(kg TADP[(1 = m

2)3]-1,1‘1}11{2.

//
[ 3N BN //
//

Figure 3. Graphs for the Green function G, in the thermodynamic limit. A dot connected m
2n lines carries a factor ("' A shaded clrcle represents the average Green functmn G.

Each loop then carries a factor §2J2G. ya
/

a self-consistency equation for G: G(A) = ( 1 () 7/[),3 J2G( 7))

For 4 = 0, equation (10) becomes an identity. Gﬁ= { f, -l - ﬁzj IG} )

LHS: G, (0) = —(A_l};'i = —(1l - mz)/
RHs: [=FA(L - g = (L= m)™ - BATPGO0)] 7 = —(L - )
For general 4 we write fl.'l =/4/-|- szz G(0) - G 1(0), For small A

I

G(A) = GO — GHOV[4 + B2JA(G(O0) — GA)] —  G(O) — G(A) = iG0)(1

and p(A) = (1/n)Im G(A — i) =0 at small A unless 1 = B2J>G*(0)

(*) is actually fulfilled (in the main order) for q = 7] !

_ ﬁzjzaz—{o'}"}q

(*)




Next orders in T (lower T's)

| = ﬁljzm — ﬁlJZ(l _ mz]z — 32‘72(1 _ zq + F:l ¥y = Ju"n.. - lzm‘l'"

% 1
N 'Trd4™' = JA dA(p(A)/4) = ﬁg{l—m?l=1—q

'6“.1 N=w JO
=
o () = 0.
2
g Marginal stability: basic
~ e feature of spin glass state
0 2 . 5 : w0
Eigenvaiue

Figure 1. Full lines: histrogram of the density of eigenvalues of the matrix A, p{A), versus A
for a typical system with N = 250 for T/T, = 06 (eigenvalues 1 > 10 not shown). Broken
lines: historgram of j{u) = (2/3)u™ "2 p(u?'?) versus u.

trace of the square of the susceptibility matrix

tr=N"' Z:J’ifjx,fs = (B*/N)Tr(A7%). = B*|di(p(2)/A?) Diverges ! 14
v

N—= o



Low temperatures: P(h) distribution

At T=0 the mean field equation ubvinusly: selects a self-consistent lowest energy

solution of m; =sign (hi}] h,= ¥, Jq‘jmj
i

To derive the low temperature thermodynamics we assume The low temperature susceptibility
x=7;=1665TJ

lim p(k)=h/H? *}=‘~"E= 1 *E(T!'J}z (T<T,),
A—0

where H and « are parameters to be determined later. hi=aTm;+ T tanh=! m,

as

mt= J mi(hyp(h)db  — H2J2=}x+(21n 2+ 1)/3+In 2/,

TAP hypothesis: H is smallest possible - % = 2\/ (lﬂ 2) ~ 1:665 and H/j ~ 1:276,.

However, marginality condition 1= 82J2(1 — m?)?> leadsto = [-810 and H/J ~ 1277
S/Nky ~ 0TT(T/T)*  versus  0-765(T/T)? 15



Metastable states in spin glasses

A J Bray and M A Moore J. Phys. C: Solid St. Phys,, 13 (1980) L469-76. Printed in Great Britain

The density of solutions associated with a particular free energy f is

| Tlam)a{Ng - £ o (7 - 3.1om)) T]10) et

11

N(f) = N? j

N

f=N"1 Zf(mi) =N~ [-In2 — }f2%(1 — ¢*) + gm;tanh™'m; + 3 In(1 — mf)].

G, =tanh™'m, + *J*(1 —gm, — > J,m =0 N, = | TT@JPU )N ().
: (i)
AU = aGy'(amj = [(1 - miz)-l + ﬁzjz(l - ‘I)] 51} - ﬁ‘fu = aiéu - B‘IEJ"
02p
02—
N~'(lna N, = (8/81):°
= 015k
o t<<1 near T ~ T=0
2 0 g 01— '
'TV \
2 \
!
0-05F \
!
[ E | \l
] i I ' 1 0 02 oL 0B 08
0 02 04 06 08 1 -E

T/T.



Major conclusions

SG state is characterized (within infinite-range model)
by an exponential (in N) number of metastable states —
solution of TAP equations.

All these solutions are marginally stable; thus gap-less
modes exist in the absence of any continuous symmetry of
the Hamiltonian.

Square of susceptibility matrix <Tr [x2, ]> diverges
anywhere in the SG phase

Free energy of SG state is not a minimum but a saddle-
point as function of the macroscopic order parameter q

17
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