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chain of Tsing spins 6,=+1 with the oscillating in-
teraction:
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At T<T,=c the averaged value of the coefficient at
l|%, which is equal to t=1-—¢/T, becomes negative,
which implies the instability of the state with (y> =0.

t<< I, ~ exp(y~!|z|*"?). Phase slips are absent

At |z|>7¥? it is convenient to pass over to the new
variables: the amplitude and phase of the field ¥:

y=pexplio+iQx). (5)



The free energy H . [¥] from (3) can be minimized
over p, which leads to the phase-dependent energy
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where {F(a)>,= | F(x)da/2n, and p is approximate-
)

ly determined by the equation

p=c<ccrsa:-th (%Igcc-sn)>. (7)

Equation (7) 1s obtained if H[@] is neglected (the
validity of 1t is discussed below) in comparison with

Fm=Heﬂ[wJ—H[«o]=p2—cT<lnch2""‘;“sﬁ> . (8)



I1. The Vicinity of the Transition Point %3 < |7| <1

Fypa=1p%+ 3 9)

For the specific heat C(T) and magnetic susceptibili-
ty ¥(T) we obtain:

C(T)=cO(—7) (tI>¥*"7) (10)
(TD=c/T (t>»y*?) (11a)
D=1~z (=>y*?). (11b)

Formula (11b) is valid at observation times that are
not too large (sce below). Formula {10} and (11) are
similar to those in the Mattis model [12] of spin
glasses without frustrations, which is quite natural,
since the averages {(o¢,> arc also expressed through
slow variables in our model. The difference is that
we have two variables, p and ¢:
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Phase-dependent Hamiltonian with “pinning”

Hlp(),01=[dl[dx |77 (2] —e 56 —x)
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Hamiltonian (TS] coincides with the

| one studied in [9-117 in connection with the prob-
+ COS 2(Q1C+iﬂ)]+ lem of charge-density wave pinning by impurities.
, 9. Fukuyama, H., Lee, P.A.: Phys. Rev. B17, 535 (1977)
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Stochastic Transfer Matrix method [10]
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a Hamilton-Jacobi equation (with a discrete _ B
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Moderately Low Temperature Range sx<T <T,=¢

At T <c the phase-pinning potential
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Average the functional over o
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Estimate for the neglected terms
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Correlation length

The total scale of the &(¢p) variation is determined by
fluctuations with @~ 1. Its value E~cy~ % is the
same as at T~ T..

Let’s find the phase correlation length L,. For this

purpose we estimate the phase variation by each

step (|[4¢|=|p,— ¢, 4| where @, is the thermal av- L cl(AaV¥S =1
erage of ¢, Then L, will be determined by the ¢ <( fP] >
condition:

Since thermal fluctuations are small, @, is deter-

mined by the position of the &(¢) minimum (perhaps, a (AGY S~ 2= < (ﬁli )z>—1
local one): £(p)=0. Using the recurrent equation 0o’
(23) we get
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Observables

First of all, we find the free energy of the system in
a certain metastable state. As was shown at the end
of the previous section, the barrier height at T3>« is
much larger than T, therefore, when calculating the
characteristics of the system corresponding to short
time scales (quasiequilibrium I), the phase ¢, can be
considered constant at a given point i and as satisfy-
ing the condition &(¢;)=0. Thermal fluctuations of
p(x) can always be neglected; therefore, the free
energy F; coincides with the Hamiltonian H, for
the given configuration of {¢,}.

H,;. is given by Formula (3). For future purposes it
is convenient to rewrite it as:

Fy=H o= {x *[(Vp)*+ p*(Vp)* ]+ p*} dx
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The behavior of the magnetic susceptibility y=
o*F . :

T different at different times of observation.

Let’s first consider y in the region where t,<t<t,

(for quasiequilibrium I, see the end of the previous

section). Inserting Formula (33) for F we obtain:
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Slowly time-dependent behavior at 7 < r < ¢

to ~ exp (Ey/T) ~ exp [(T/v)*"] fy ~ exp oy /1)
One of the major characteristics: dissipative response
(0;7 = sign [(cos (¢, + Ox))]
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Im y(w) ~ ?j dE dA R(E, 4) N(E) sech? %

7(E) ~ e¥T K 1is the free-energy barrier between two states

A is the energy difference between these states
R(E, A)isthe joint probability density
N(E) ~ HE)X(E) 1s the number of spins that ﬂipint'h-e caursé m’c [ht‘!’[l:ﬂ-l';;i_tgljl

between two metastable states



1 E() probability of finding a zero of f(¢' + ®)
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Figure 11 Hierarchical structure of metastable states. constitute a fractal set

with fractal dimension D; =

consider the behaviour of the function Jf(@) = 0e/09 at ¢ —rc}: - ;
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Thus the linear density of relaxation modes with barriers in the interval
(E, E+dE) is given by

M(E) ~ X(E) = X($(E)) ~ y SEVS

d (M(E) dE
W(E) dE ~ dE(X(E)) Ay ™ (3.2.16)
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characteristic scale of A is of order E, so that j dA R(E, A) sech? % ~ W(E) ¥

Combining all above estimates:
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In the time domain: <) ~ (T1n 1) . v (t) = - (1/T) dC(t)/dt (t>0)

Fluct-diss. relation



Two problems to solve

1. Generating functional (defined in slide 7) and corresponding action
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refer to the free energy 8>n((p) defined for the recursion > from

the left end of the chain to the reference site n
Actually one should consider the sum € (¢) =€ (9) +€° (¢)

of two parts of free energy since this is the physical free energy
in the middle of the chain
The problem: a) to produce scaling estimates similar to those

presented in slide 8, but the total Sn((p) :
b) to check if the distribution of zeros of the function den((p)/ do
is the same as was derived for de” (9)/d¢ (slide 12); if it is not

the same, to derive the correct one.



2. Imaginary part of response Im y(®w) was calculated (slide 12)
assuming Gibbs distribution for different metastable
states, each of them defined by some minimum of function

en((p). However, this assumption of full equilibrium is not
valid if aging dynamics on timescales 1:a << 1:1 is considered

(for definition of t see slide 11) . Namely, thermodynamic

Gibbs distribution will be established for modes separated by
energy barriers E << TIn (t /t), whereas modes with

barriers E >> T In (t /t) will be populated just randomly.

As a result, function 1/cosh*(A/2T) in the integral on slide 13
should be replaced by some non-equlibrium function,

dependent on the value of ta

The problem: to find (approximately) this non-equilibrium
and non-stationary distribution function for the range of
E ~ Tln(t/t) and then calculate aging part of the

response function Im y () .



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

