

Depinning in disordered Josephson arrays and arrays of phase slip elements

Alexander Shnirman KIT & Landau Inst.

N. Vogt, R. Schäfer, H. Rotzinger, W. Cui, A. Fiebig, A.S. and A. V. Ustinov, cond-mat/1407.3353

J E. Mooij, G. Schön, A.S., T. Fuse, C.J.P.M. Harmans, H. Rotzinger and A. H. Verbruggen, New J. Physics 17, 033006 (2015)

Haviland, Delsing, PRB 1996 Ågren, Andersson, Haviland, JLTP 2000,2001 R. Schäfer et al., arXiv:1310.4295

30-5000 junctions in array $E_J(\Phi) = 2E_{J,0}\cos\frac{\pi\Phi}{\Phi_0}$ $E_{J,0} \sim E_C \equiv \frac{(2e)^2}{2C}$ $E_{C_0} \equiv \frac{(2e)^2}{2C_0} \gg E_C$

Poor screening

•(Super)conductor - insulator (Coulomb blockade) transition

•Linear response

Chow, Delsing, Haviland,, PRL 1997

•(Super)conductor - insulator transition: non-linear response

 $E_J(\Phi) > E_C$

•Flux dependent Coulomb blockade

•Hysteresis

0.0

-1.0

-0.5

0.0

Voltage (mV)

0.5

1.0

Ågren, Andersson, Haviland, JLTP 2000,2001

R. Schäfer, H. Rotzinger, A. Ustinov (private communication, 2010-2012) R. Schäfer et al., arXiv:1310.4295

•Flux dependent dissipative transport of Cooper pairs at high voltages

R. Schäfer, H. Rotzinger, A. Ustinov (private communication, 2010-2012)

R. Schäfer et al., arXiv:1310.4295

Flux dependent dissipative transport of Cooper pairs at high voltages
Flux dependent Coulomb blockade
Hysteresis

R. Schäfer et al., arXiv:1310.4295

Flux-dependent switching voltage

Ågren, Andersson, Haviland, JLTP 2000,2001

Threshold voltage scales linearly with array length No effect of overall gate voltage

The model (no disorder)

$$H = \frac{1}{2} \sum_{i,j} U(i-j) n_i n_j - \sum_i E_J \cos(\theta_{i+1} - \theta_i)$$
$$[n_j, e^{i\theta_{j'}}] = e^{i\theta_j} \delta_{j,j'} \qquad U(i-j) = (2e)^2 (\hat{C}^{-1})_{i,j}$$
$$(\hat{C})_{i,j} = C_0 \delta_{i,j} + C [2\delta_{i,j} - \delta_{i,j+1} - \delta_{i,j-1}]$$

Review: R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001)

Charging energy

Charging energy $E_C \equiv \frac{(2e)^2}{2C}$ Screening length $\Lambda \equiv \sqrt{\frac{C}{C_0}}$ $E_{C_0} \equiv \frac{(2e)^2}{2C_0} \gg E_C$

$$H_C = \frac{1}{2} \sum_{i,j} U(i-j) n_i n_j$$

$$\Lambda \equiv \sqrt{\frac{C}{C_0}} \gg 1 \quad \Longrightarrow \quad U(i-j) \approx \Lambda E_C e^{-\frac{|i-j|}{\Lambda}}$$

BKT quantum phase transition

$$K = \frac{\pi}{\Lambda} \sqrt{\frac{E_J}{2E_C}} \qquad K > 2 \qquad \text{Insulator} \\ K < 2 \qquad \text{Superconductor}$$

S. E. Korshunov, Sov. Phys. JETP 68, 609 (1989)
M.Y. Choi et al., Phys. Rev. B 48, 15 920 (1993)
G. Rastelli, I. M. Pop, and F. W. J. Hekking, Phys. Rev. B 87, 174513 (2013)

$\Lambda \to \infty \Rightarrow \text{insulator for } E_J > E_C$

In experiment: "transition" mostly at $E_J \sim E_C$

Quasi-charge description

Charge conservation $2en_n = 2e(m_n - m_{n+1}) = q_{n+1} - q_n - q_n^{gate}$

$$Q_n = const. + \sum_{m < n} q_m^{\text{gate}} = q_n + 2em_n$$
 Dis

Displacement charge on junction n

$$q_n = Q_n - 2em_n$$

Charge that has arrived at junction n

$$Q_n(t) = \int^t I_n(t')dt'$$
 const. = $2em_{-\infty}$

Idea of charge solitons in arrays of tunnel junctions Conducting Grains Insulator n_m $-q_m^{\text{gate}}$ **Conducting Substrate** $V_n = \frac{Q_n - 2em_n}{C} = \frac{Q_{n+1} + Q_{n-1} - 2Q_n}{C_0}$ Ben-Jacob, Mullen, Amman (1989) Likharev et al. (1989) Charge that has arrived at junction $Q_n = const. + \sum q_m^{\text{gate}} = \int I_n(t') dt'$ m < n1 $\Lambda \equiv \sqrt{\frac{C}{C_0}}$ 0.8 0.6 $Q_n^{0.4}$ Screening length 0.2 0 0 20 60 -60 -40 -20 40

Quasi-charge description

$$H = \sum_{n} \left[\frac{(Q_n - 2em_n)^2}{2C} - E_J \cos \phi_n + \frac{(Q_n - Q_{n-1})^2}{2C_0} + \frac{\Phi_n^2}{2L_0} \right]$$

Continuous charge that has flown into junction n

$$Q_n = const. + \sum_{m < n} q_m^{\text{gate}}$$
$$[\Phi_n, Q_{n'}] = i\hbar \delta_{n,n'}$$

Quantized charge that has tunneled through junction n

 $2em_n$

$$[m_n, e^{i\phi_n'}] = e^{i\phi_n} \delta_{n,n'}$$

Limit of large (kinetic) inductance

Hermon, Ben-Jacob, Schön, PRB 96 Gurarie, Tsvelik, JLTP 03

Bloch inductance

Zorin PRL 2006

Single current biased JJ $H(Q(t)) = \frac{(2em - Q(t))^2}{2C} - E_{\rm J}\cos\phi$

Voltage (adiabatic case) $V = \left\langle \frac{Q - 2em}{C} \right\rangle = \left\langle \frac{\partial H}{\partial Q} \right\rangle$ $= \frac{\partial E_0}{\partial Q} + L_B(Q)\ddot{Q} + \frac{1}{2}\left[\partial_Q L_B(Q)\right]\dot{Q}^2$

Euler - Lagrange Eq. for $L_{\text{eff}}(Q, \dot{Q}) = \frac{L_B(Q)\dot{Q}^2}{2} - E_0(Q) - VQ$

 $L_B(Q) \approx L_I$ for $E_I > E_C$

J. Homfeld, I. Protopopov, S. Rachel, and A. S., Phys. Rev. B 83, 064517 (2011)

Josephson junction energy bands

$$L_J = \frac{1}{E_J} \left(\frac{\Phi_0}{2\pi}\right)^2$$

"sine-Gordon" Lagrangian

$$\mathcal{L} = \sum_{n} \left[\frac{1}{2} \left[\mathbf{L}_{0} + L_{B}(Q_{n}) \right] \dot{Q}_{n}^{2} - \frac{(Q_{n} - Q_{n-1})^{2}}{2C_{0}} - E_{0}(Q_{n}) \right]$$

$$L_B(Q) \approx L_J \text{ for } E_J \ge E_C$$

$$L_J = \frac{1}{E_J} \left(\frac{\Phi_0}{2\pi}\right)^2$$
Bloch Inductance

$L_0 \rightarrow 0$ No longer needed

J. Homfeld, I. Protopopov, S. Rachel, and A. S., Phys. Rev. B 83, 064517 (2011)

Luttinger Lagrangian for $E_J \gg E_C$

$$\mathcal{L} = \frac{1}{2\pi K} \sum_{n} \left[\frac{\dot{q}_n^2}{v} - v \left(q_n - q_{n+1} \right)^2 \right] + \sum_{n} E_S \cos\left(2q_n\right)$$

$$q_n = \pi Q_n / (2e)$$

$$v \equiv \frac{1}{\sqrt{L_J C_0}} \qquad \qquad K = \pi \sqrt{\frac{E_J}{2E_{C0}}} = \frac{\pi}{\Lambda} \sqrt{\frac{E_J}{2E_C}} \ll 1$$

 E_S phase slip amplitude - relevant perturbation

Classical dynamics of $Q_n(t)$

J. Homfeld, I. Protopopov, S. Rachel, and A. S., Phys. Rev. B 83, 064517 (2011)

Charge disorder: pinning

Gurarie, Tsvelik, JLTP 03

$$H = \frac{1}{2} \sum_{i,j} U_{i,j} \left(n_i + \delta q_i \right) \left(n_j + \delta q_j \right) - \sum_i E_J \cos(\theta_{i+1} - \theta_i)$$

Offset charges

$$H = \frac{1}{2} \sum_{i,j} U_{i,j} \left(n_i + \delta q_i \right) \left(n_j + \delta q_j \right) - \sum_i E_J \cos(\theta_{i+1} - \theta_i)$$

quasi-charge description

$$\mathcal{L} = \sum_{n} \left[\frac{1}{2} L_B(Q_n + F_n) \dot{Q}_n^2 - \frac{(Q_n - Q_{n-1})^2}{2C_0} - E_0(Q_n + F_n) \right]$$

Strong disorder:

$$F_n = 2e \sum_{i=-\infty}^{n} \delta q_i \quad P(\delta q) = const. \text{ for } \delta q \in [-1/2, 1/2]$$

$$\bigvee \mod (2e)$$

$$\langle F_n F_m \rangle \sim \delta_{n,m}$$

Charging energy

$$H_{c} = \sum_{n} \left[\frac{\left(Q_{n} - Q_{n+1}\right)^{2}}{2C_{0}} + U\left[Q_{n} + F_{n}\right] - EQ_{n} \right] ,$$

$$H_c = \int dx \left[\frac{(\partial_x Q(x))^2}{2C_0} + U \left[Q(x) + F(x) \right] - E Q(x) \right]$$

 $U[Q] \equiv E_0(Q)$ Lowest Bloch band

Larkin length

$$H_{c} = \sum_{n} \left[\frac{\left(Q_{n} - Q_{n+1}\right)^{2}}{2C_{0}} + U\left[Q_{n} + F_{n}\right] \right]$$

$$\langle \left[Q_{n} - Q_{m}\right]^{2} \rangle \sim e^{2} \left(\frac{|n - m|}{N_{L}}\right)^{(4-D)}$$

Compare elastic and pinning energy

$$N_L \times \frac{\left[e/N_L\right]^2}{2C_0} \sim \sqrt{N_L} \,\Delta U \qquad \qquad \Delta U \sim (U_{max} - U_{min})$$
$$N_L \sim \left(\frac{E_{C0}}{\Delta U}\right)^{2/3} \sim \Lambda^{4/3} \tilde{R}^{-1/3} \qquad \qquad \tilde{R} \equiv \frac{(\Delta U)^2}{E_C^2}$$

A. I. Larkin, Sov. Phys. JETP 31, 784 (1970)
Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975)
H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978)

Depinning

Depinning field $E_p \approx \frac{e}{C_0 N_L^2}$

$$V_{sw} \approx \frac{NE_C}{2e} \Lambda^{-\frac{2}{3}} \tilde{R}^{2/3}$$

$$\tilde{R} \equiv \frac{(\Delta U)^2}{E_C^2}$$

$$\frac{V_{sw}}{N} \approx \frac{E_C}{2e} \Lambda^{-\frac{2}{3}} \tilde{R}^{2/3} \left[E_J(\Phi) / E_C \right]$$

 $\circ\,A255 \diamondsuit B255 \, {\rm \tiny \Box}\, C255$

Transport after depinning

Monte-Carlo simulations with quasi-particles and for $E_J \ll E_C$ J. H. Cole, J. Lepp!akangas, and M. Marthaler, New J. of Physics 16, 063019 (2014)

Transport after depinning

Two scenarios:

1) Multiple LZ in a single junction, high $V>2\Delta/e$ on that junction, quasiparticle relaxation

Drawback: no dependence on flux

2) Many (majority of junctions) are, e.g., in the second band, higher pinning voltage, relaxation via incoherent Cooper pair tunneling

Transport after depinning

Many (majority of junctions) are, e.g., in the second band, higher pinning voltage, relaxation via incoherent Cooper pair tunneling

$$V_{sw} \approx \frac{NE_C}{2e} \Lambda^{-\frac{2}{3}} \tilde{R}^{2/3}$$
$$\tilde{R} \equiv \frac{(\Delta U)^2}{E_C^2} \qquad U[Q] = E_1(Q)$$
First Bloch band

$$\Delta U_{1Band} \gg \Delta U_{0Band}$$

$I \propto [E_{\rm J}(\Phi)]^2$

$$H = \frac{1}{2} \sum_{i,j} U_{i,j} (n_i + \delta \phi_i) (n_j + \delta \phi_j) - \sum_i E_S \cos(q_{i+1} - q_i)$$

$$U_{i,j} \approx \Lambda E_L e^{-\frac{|i-j|}{\Lambda}}$$
 $\Lambda \equiv \sqrt{\frac{L}{L_0}} \gg 1$ $E_L \equiv \frac{\Phi_0^2}{2L}$

$$\mathcal{L} = \sum_{n} \left[\frac{1}{2} C_B (\Phi_n + F_n) \dot{\Phi}_n^2 - \frac{(\Phi_n - \Phi_{n-1})^2}{2L_0} - E_0 (\Phi_n + F_n) \right]$$

$$F_n = \Phi_0 \sum_{i=-\infty}^n \delta \phi_i \qquad \Phi_n = \Phi_0 \sum_{i=-\infty}^n \phi_{0i}$$

Weak (correlated) disorder

$$H = \frac{1}{2} \sum_{i,j} U_{i,j} (n_i + \delta \phi_i) (n_j + \delta \phi_j) - \sum_i E_S \cos(q_{i+1} - q_i)$$
$$\mathcal{L} = \sum_n \left[\frac{1}{2} C_B (\Phi_n + F_n) \dot{\Phi}_n^2 - \frac{(\Phi_n - \Phi_{n-1})^2}{2L_0} - E_0 (\Phi_n + F_n) \right]$$
$$F_n = \Phi_0 \sum_{i=-\infty}^n \delta \phi_i$$

Weak disorder $\gamma \ll 1$

 $\delta\phi_i \in \left[-\frac{\gamma}{2}, \frac{\gamma}{2}\right]$

$$P(\delta\phi_i) = \frac{1}{\gamma} \theta\left(\frac{\gamma}{2} - |\delta\phi_i|\right)$$

$$L_{corr} = -\frac{1}{\ln\left(\frac{\sin(\pi\gamma)}{\pi\gamma}\right)} \qquad \langle E_0 \left(Q + F_i\right) E_0 \left(Q + F_j\right) \rangle_{dis} \sim \exp\left[-\frac{|i-j|}{L_{corr}}\right]$$

Numerical simulations: pinned solutions

Pinned solution close to depinning

Running solution

Clean limit

 $eV_{sw} \sim \Lambda E_C$

Energy to create one charge soliton

Weak (correlated) disorder

Conclusions

I) Onset of transport: Depinning of charge density profile

2) Intermediate voltage regime: LZ + incoherent CP tunneling

3) QPS arrays: correlated weak disorder

Adiabaticity check

 $Q_n \approx Q_m$ if $|n - m| < N_L$

Piece of order Larkin length is pinned and oscillates as a whole

Pinning frequency

$$\omega_{pin} \sim \sqrt{\frac{E_J E_C}{2\sqrt{N_L}}} \ll \sqrt{2E_J E_C}$$

for $E_{I} \sim E_{C}$

 $(\mathbf{A} \mathbf{T} \mathbf{T} \mathbf{Y}) \mathbf{9}$

adiabatic if $N_L \gg 1$

$$N_L \sim \Lambda^{4/3} \tilde{R}^{-1/3}$$
 $\Lambda \gg 1$ helps $\tilde{R} \equiv \frac{(\Delta U)^2}{E_C^2}$

Adiabaticity check

$$\mathcal{L} = \sum_{n} \left[\frac{1}{2} L_B (Q_n + F_n) \dot{Q}_n^2 - \frac{(Q_n - Q_{n-1})^2}{2C_0} - E_0 (Q_n + F_n) \right]$$

 $Q(x) \approx Q(x')$ if $|x - x'| < L_L$

inductance sampling $L_{\text{eff}} \approx \frac{1}{L_L} \sum_n L_B(Q + F_n)$

 $L_L \approx \Lambda^{4/3} \tilde{R}^{-1/3} \qquad \Lambda \gg 1 \text{ helps}$