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In the presence of disorder 
     is considerably enhanced at low T

F

Perturbation theory – interacting systems

For (insulating)

Altshuler, Aronov and Lee (1980), Finkel’stein (1983)

Finkel‘stein (1983)

WL correction 
(Gang of 4)

1-singlet 
contribution

3-triplet 
contribution

Disorder makes the  
interaction scale-dependent



diffuson

cooperon

Non-linear Sigma model: Effective low energy  (Τ < 1/τ < EF) action 
for the disordered Fermi/electron liquid- Finkel’stein (1983) 

[noninteracting case: Wegner, Efetov Larkin Khmelnitskii,… (1979-)]

frequency renormalization

triplet-channel

Different methods: Replica/Keldysh

Non-linear Sigma model (NLσM)



The interplay of disorder and interactions is captured by a set of 
coupled Renormalization Group (scaling) equations for ρ and γ2

One more equation:

 does not affect the flow of ρ and γ2, 
important to understand thermodynamic properties

Structure of the RG equations

1-loop: leading 
order in ρ, all 
orders in the 
interaction.



Data from the region C* in a high- 
mobility sample. No adjustable 
parameters  are used.

A.Punnoose and A. Finkelstein, PRL (2002) 
S. Anissimova et al.,  Nature Physics (2007) 

 Pudalov, et al., (’98)

Analysis of high-mobility sample with RG for two valleys
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Thermal transport and the 
Wiedemann Franz law
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The Wiedemann-Franz law

Electric  
conductivity

Thermal 
conductivity

Peltier 
coefficient

Seebeck  
coefficient

The Wiedemann-Franz “law” Lorenz number

The Wiedemann Franz law is an approximate  
low-temperature relation for itinerant electron systems. 

What is the range of validity?



• Wiedemann-Franz law (κ/σT=const.) holds  
    for noninteracting disordered electron systems - Chester, Thellung (1961). 

• Wiedemann-Franz law holds  
    for a Fermi liquid - Langer (1962). 

 After the development of the scaling theory of localization for interacting electrons   
[Finkel‘stein 83, Castellani et al. 84]: 

• Wiedemann-Franz law holds  
    for the disordered electron liquid (renormalized perturbation theory, Ward Identities) 
  - Castellani, di Castro, Kotliar, Lee, Strinati (1987-).  

• Wiedemann-Franz law violated  
    for the disordered electron liquid (perturbation theory)          
   

Kubo-formula – Arfi (1992), Niven, Smith (2005). 

Kinetic equation approaches  - Livanov et al. (1991), Raimondi et al. (2004), Catelani, Aleiner (2005),  
      Michaeli, Finkelstein (2009).

Heat transport and the Wiedemann-Franz law in disordered 
electron systems - History of the problem

While approaches differ, the result is common: Additional corrections, Wiedemann-Franz law violated 

Can one resolve the contradiction and construct a comprehensive theory 
(including RG and additional log corrections) ?



• How is heat transported through the system? 
• What are the consequences of replacing the electric 

field by a temperature gradient

Can one generalize the RG approach to thermal  
transport?
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How to approach the problem? 
How to do RG including a temperature gradient? 

The scaling theory for σ was developed on the basis of a field theory (NlσM) with 
source fields. How to account for a temperature gradient? 

    

Perturbative calculations for κ were (mostly) based on kinetic equation approaches. 
Including a temperature gradient is straightforward, but how to do RG?

Our approach: Renormalize the NlσM with source fields  
(Luttinger‘s „gravitational potential“ mimics temperature variation). 

 



Source fields for the heat density correlation function

Action:

Gravitational  
potential

Luttinger (1964)



Source fields for the heat density correlation function

Problem:

Change of variables:

After this transformation, the derivation of the NLσM is straightforward:

nonlinear in η!



NlσM with “gravitational potentials”



The correlation function

Heat density correlation function  
in the diffusive limit

Static limit Conservation law

Thermal conductivity



Specific heat
1. Direct calculation: Heat density - specific heat 
    (linear terms in η) 
2. Static part of the correlation function  
     (quadratic terms in η)



Heat density and specific heat

Heat density

+ + + . . .

+ + + . . .

kd� :

kd� :

Specific heat

S[Q] ⇠
Z

drtr[D(rQ)2 � 2z{"̂, 1� ⌘ + ⌘2}Q] +Q(1� ⌘ + ⌘2)(�1 + �2)Q

Castellani, Di Castro (1986)

�c = @T k
d
⌘=0 = �zcFL



Specific heat and the static part of the correlation function

S[Q] ⇠
Z

drtr[D(rQ)2 � 2z{", 1� ⌘ + ⌘2}Q] +Q(1� ⌘ + ⌘2)(�1 + �2)Q



RG and the dynamical part  
of the correlation function



RG and the dynamic part of the correlation function

Initial conditions:

Parameterization:

fast slow slowest: distribution function



RG and the dynamic part of the correlation function

Result: Fixed point



22

(Generalized) Einstein relations: 

The structure immediately implies:  
Wiedemann Franz law is not violated within the RG regime (T<ε<1/τ),  

neither for short-range nor for long-range (Coulomb) interaction.

Something is missing in this treatment!

Conductivities and the Wiedemann Franz law



Beyond RG – the low temperature regime 
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Dynamical part:

Renormalization of D, ξ, z, Λ, Γ

Density-density correlation function: Heat density-heat density correlation 
function:

General structure of the correlation functions

Castellani et al. (1987)



25Such contributions are not part of the traditional RG scheme!  

Why heat transport is different 

Finite result only for 

WF

Rescattering is 
suppressed for 

constant Γ!



Additional logarithms

For short-range interactions there are no additional (logarithmic) corrections. 

For the electron liquid (Coulomb interaction) there are additional logarithmic 
contributions from scattering processes with sub-T frequency transfer. 

+ +

+...

All contributions are proportional to Im(UR):  Decay into particle-hole pairs. 

Example:
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Consistent with 
conservation law!

Corrections to heat conductivity

Additional logarithmic correction  (not related to c!):

Additional logarithmic correction to κ:

WF law is violated!

From the regime:

Agrees with the result of 
(recent) kinetic  

equation approaches

Dk =
1

z

�
Dn + �Dh

�
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Results: Thermal transport and the WFL

RG regime

sub-T regime

Energy scales

WFL
-disordered Fermi liquid

-disordered electron liquid
despite strong renormalizations

WFL
-disordered Fermi liquid

-disordered electron liquid
WFL

Additional (delocalizing) logarithmic corrections!

 GS & Finkel’stein, with Keldysh NLσM 
PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); forthcoming



• We developed a field theoretic model with „gravitational potentials“ 
suitable for the analysis of heat density correlation function in the 
disordered electron liquid. 

• The terms linear and quadratic in the gravitational potentials are 
consistent with each other and also with thermodynamics.  

• For short range interactions the renormalization of κ  and of σ  are 
linked through the WF law. 

• For long-range (Coulomb) interaction there are additional logarithmic 
corrections originating from outside of the RG regime. They lead to a 
violation of the WF law.
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Summary 

Thank you!
 Georg Schwiete  &  Alexander Finkel’stein,   
 Phys. Rev. B 89 (2014);  RG with Keldysh NLσM; 
 Phys. Rev. B 90 (2014)(R); Wiedemann Franz law 
 Phys. Rev. B 90 (2014); RG for Keldysh NLσM with grav. potentials 
forthcoming: Analysis of low temperature regime


