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50 (T) = _;3_2 [1 + (1 ~ gva] log(1/T'7) e

WL correction
(Gang of 4)

1-singlet 3-triplet <«
contribution contribution 72

For ~5 <1, d0(T)< 0| (insulating)

Altshuler, Aronov and Lee (1980), Finkel’stein (1983)

Disorder makes the
0%, interaction scale-dependent

072(T) ~ plog(1/T7)> 0

In the presence of disorder
Yo is considerably enhanced at low T

Finkel'stein (1983)



Non-linear Sigma model: Effective low energy (T < 1/x < E;) action

for the disordered Fermi/electron liquid- Finkel’stein (1983)
[noninteracting case: Wegner, Efetov Larkin Khmelnitskii, ... (1979-)]
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Different methods: Replica/Keldysh



The interplay of disorder and interactions is captured by a set of
coupled Renormalization Group (scaling) equations for p and v,

dlnp

’S £ =1In(1/T7)

dy2 I's

One more equation:

1-loop: leading

o order in p, all

nz_ orders in the
d§ B:(p,72) interaction.

does not affect the flow of p and y,,
important to understand thermodynamic properties
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Data from the region C"in a high-
mobility sample. No adjustable
parameters are used.

A.Punnoose and A. Finkelstein, PRL (2002)
S. Anissimova et al., Nature Physics (2007)
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Electric Seebeck
conductivity g ¥ coefficient

Peltier ~ Thermal
coefficient H R conductivity

The Wiedemann-Franz “law”

/‘izﬁ()O'T Lo =

Lorenz number
’7T2 k% o CFJ,
3 e? 2ve?T

The Wiedemann Franz law is an approximate
low-temperature relation for itinerant electron systems.
What is the range of validity?



Wiedemann-Franz law (x/oT=const.) holds
for noninteracting disordered electron systems - Chester, Thellung (1961).

Wiedemann-Franz law holds
for a Fermi liquid - Langer (1962).

After the development of the scaling theory of localization for interacting electrons
[Finkel‘stein 83, Castellani et al. 84]:

Wiedemann-Franz law holds
for the disordered electron liquid (renormalized perturbation theory, Ward Identities)
- Castellani, di Castro, Kotliar, Lee, Strinati (1987-).

Wiedemann-Franz law violated
for the disordered electron liquid (perturbation theory)

Kubo-formula — Arfi (1992), Niven, Smith (2005).

Kinetic equation approaches - Livanov et al. (1991), Raimondi et al. (2004), Catelani, Aleiner (2005),
Michaeli, Finkelstein (2009).

While approaches differ, the result is common: Additional corrections, Wiedemann-Franz law violated

Can one resolve the contradiction and construct a comprehensive theory
(including RG and additional log corrections) ?






Perturbative calculations for Kk were (mostly) based on kinetic equation approaches.
Including a temperature gradient is straightforward, but how to do RG?

The scaling theory for o was developed on the basis of a field theory (NIcM) with
source fields. How to account for a temperature gradient?

source @

NloM — (nn) pinstemn

Our approach: Renormalize the NIcM with source fields
(Luttinger‘s ,,gravitational potential®“ mimics temperature variation).
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Action: Sy*, ] = /t(w*iaﬂb — kv, v))

Z = /D(w,¢*> ' k= ho @ pn
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Luttinger (1964)



S[g*, 9] = / (i) — (1 + )k[w*, ¥])

r,t

Problem: g, — — / (1T 4+ n)Y " ugst
r.t

Y

1 1

After this transformation, the derivation of the NLoM is straightforward:

Change of variables:

S1Q] ~ / dr tr [D(VQ)? + 2i2{¢, \}@Q] + QAT +I2)Q

A= m ~ 1—77—|—772 + ... nonlinear in !




S| ~ [ drtx 2
/ ID(VQ)? + 2iz{é, \}Q] + QA1 + T'2)Q

A 1—n+ 1
1 " Fxf
N
2 | ¢ rpf
S




Heat density correlation function
In the diffusive limit

T Drq?
= —cC
XEkEk Drcl — i
Static limit Conservation law
Xkk(d = 0,w =0) = =T Xke(q=0,w—0) =0

Thermal conductivity

/iZCDk







S[Q] ~ / drer[D(VQ)? — 206, 1 — 1+ 723Q] + Q(1 — 1+ 7%)(T1 +T2)Q

Heat density Specific heat
oc = 8ka7l:0 — 5ZCFL
Castellani, Di Castro (1986)

+ +o




S[Q] ~ [ drtr[D(VQ)? — 22{e,1 —n+n°}Q] + QL —n+7n°)(T1 +T2)Q

X = =5 = —1'c C = ZCfpJ,







S = /tr[D(l +0)(VQ)? +2i2{8, 1+ CIQI+ 3 QU+ )TiQ

i=1,2

Initial conditions: (p =0 C, = CPl — CPQ - —
Parameterization: Q — U USQst_l u_l Q2 — 1

fast slow slowest: distribution function

UL Ci(ea — e3)Usye, #Ci(e1 — €4)

0 0 0 0
A(DCD) — (CDDa—D + Cz 8 + CF1F1 arl CF2F2 8F2) AD

0 0 0 0
A(z¢,) = (CDD(‘?—D + Cz —I— Cr, ' — ar, + (I 8F2> Az




S = /tr[D(l +0)(VQ)? +2i2{8, 1+ CIQI+ 3 QU+ )TiQ

i=1,2

Result: Fixed point

A(p = A(, = A¢r, = A¢r, =0
(p=0 ¢ =C, =Cr, =7

S = /tr[D(VQ)2 + 2i2[{&,1 = n}Q] + Q(1 —n)(T'1 +T'2)Q

DkqQ D
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Xkk = —cI’




(Generalized) Einstein relations:
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The structure immediately implies:
Wiedemann Franz law is not violated within the RG regime (T<€<1/x),

neither for short-range nor for long-range (Coulomb) interaction.

Something is missing in this treatment! =






Density-density correlation function: Heat density-heat density correlation
function:
dn W 9 W
= — +2wA? . = —cl'—cp, TN, —
Xnn dp L1+ 2w Xkk FL k r-1
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Renormalization of D, E, z, A, T
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dyn
Xph
e T e 2 T2 VVF
L e —
c . 8/ / Rescattering is
Lt L cl'e” — () suppressed for
B ——— constant I'!

Finite result only for T" = F(g’ 5’)
Such contributions are not part of the traditional RG scheme!



For short-range interactions there are no additional (logarithmic) corrections.

For the electron liquid (Coulomb interaction) there are additional logarithmic
contributions from scattering processes with sub-T frequency transfer.

All contributions are proportional to Im(UR): Decay into particle-hole pairs.

Example:

Xk X / ev0.F.(F.., + F._,)ReD?(k,
k,e,v




Additional logarithmic correction (not related to c!):

B Dyq°
RIS = Drq? — iw
1
Dy, = — (D, + 6D")
2

Consistent with
conservation law!

Additional logarithmic correction to «:

0Kk =

T

— log

12

2
Dk

From the regime:

T? 2
D—/<;2<Dk <T

Ke: screening radius

WEF law is violated!
o /\

Agrees with the result of
(recent) kinetic
equation approaches
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S[Q] ~ / dr tr[D(VQ)? + 2i2{2, \}Q] + QAT + T2)Q

2
Energy scales AR 1=+

EF GS & Finkel’stein, with Keldysh NLoM
PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); forthcoming

1 [ J
T . -disordered Fermi liquid
e RG regime WFL -disordered electron liquid
T . despite strong renormalizations
: sub-T regime WFL -disordered Fermi liquid
T2 . m -disordered electron liquid

Dk Additional (delocalizing) logarithmic correctlzgns!
S



« We developed a field theoretic model with ,gravitational potentials®
suitable for the analysis of heat density correlation function in the

disordered electron liquid.

« The terms linear and quadratic in the gravitational potentials are
consistent with each other and also with thermodynamics.

« For short range interactions the renormalization of k and of ¢ are

linked through the WF law.

* For long-range (Coulomb) interaction there are additional logarithmic
corrections originating from outside of the RG regime. They lead to a

violation of the WF law.

Georg Schwiete & Alexander Finkel’stein,

Phys. Rev. B 89 (2014); RG with Keldysh NLoM;

Phys. Rev. B 90 (2014)(R); Wiedemann Franz law

Phys. Rev. B 90 (2014); RG for Keldysh NLoM with grav. potentials

forthcoming: Analysis of low temperature regime

Thank you!
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