

Superconductor-insulator transition in disordered FeSe thin films

R. Schneider¹, A.G. Zaitsev¹, D. Fuchs¹, H. von Löhneysen^{1,2}

Karlsruhe Institute of Technology

¹Institut für Festkörperphysik and ²Physikalisches Institut

Thin Films and Interfaces

- overview of iron-based superconductors
- FeSe thin films: preparation and properties
- ordered FeSe thin films: excess conductivity and BKT transition
- disordered FeSe thin films: superconducting and insulating phases,

superconductor-insulator transition

- disordered FeSe thin films in a magnetic field
- > summary

Material classes of superconducting FePn / Ch

- > 11 FeTe_{1-x}Se_x $T_c = 15K$ for x = 0.5 and $T_c = 8K$ for x = 1
- > 122* $A_{1-x}Fe_{2-y}Se_2$ $T_c \approx 32K$ (A = K, Rb, Cs, (TI,K), (TI,Rb))
- > 122 $BaFe_2As_2$ $T_c = 38K in Ba_{0.6}K_{0.4}Fe_2As_2$
- > 111 LiFeAs $T_c = 18K$
- > 1111 ReFeAsO_{1-x} F_x $T_c = 25 56K$
- > 21311 Sr_2VO_3FeAs $T_c = 37K$ "(n+1)n(3n-1)22"

Unit cells and structural motif

J. Paglione, R.L. Greene, Nature phys. 6, 645 (2010)

F. Wang, D.-H. Lee, Science 332, 200 (2011)

<mark>β - FeSe</mark>

Y. Mizuguchi, Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010)

FeSe thin films: deposition and optimization

optimized substrate temperature

R. Schneider et al., Supercond. Sci. Technol. 26, 055014 (2013)

Excess conductivity

BKT transition and Gi

B.I. Halperin , D.R. Nelson, J. Low Temp. Phys. 36, 599 (1979)

2D Ginzburg - Levanyuk number Gi:

 $T_{BKT} = 5.5 \text{ K}$ $T_{MF} = 8.8 \text{ K} \rightarrow Gi = 5 \times 10^{-2}$

A. Larkin, A. Varlamov Theory of Fluctuations in Superconductors N.Y.: Oxford University Press (2005)

- comparable to YBa₂Cu₃O_{7-x}
- Iarge m and low n_s favor large Gi
- 2D superconducting fluctuations
 important in the layered FeSe
 compound

V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972)J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

High sensitivity to disorder

Thickness threshold at 300 nm

- bulklike features for t > 300 nm
- \succ increase of ρ_0
- ➤ decrease of RRR
- > decrease of T_c with decreasing t < 300 nm

Fanlike set of curves

- 20 nm < t < 300 nm
 - R_s(1.2K) ≠ 0
 - $R_s(0) \neq 0$
- 19 nm < t < 20 nm
 - horizontal separatrix indicating SIT
- t < 19 nm
 - $\partial R_s(T,t)/\partial T < 0$

Disorder driven SIT

 $\mathbf{R}_{s} = \mathbf{R}_{c} \mathbf{f} \left(\frac{\left| \mathbf{t} - \mathbf{t}_{c} \right|}{\mathbf{T}^{1/zv}} \right)$

z dynamical critical exponentv correlation-length exponent

Boson localization

- M.P.A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
- finite-size scaling of R_s
- linear log-log plot provides zv
- > z=1: v=7/3 consistent with universality class of quantum percolation

Isotherms R_s(t,T=const.)

- > crossing point (t_c , R_c)
- \succ strong exponential decrease of R_s with increasing t
- crossover to weak 1/t decrease

R. Schneider et al., Phys. Rev. Lett. 108, 257003 (2012)

D.-H. Lee et al., Phys. Rev. Lett. 70, 4130 (1993)

FIG. 3. The scaling plot for quantum percolation. Inset: $ln\xi_{\infty}$ vs $ln\mu$.

M.A. Steiner et al., Phys. Rev. B 77, 212501 (2008)

X. Leng et al., Phys. Rev. Lett. 107, 027001 (2011)

Ultrathin YBa₂Cu₃O_{7-x} films

Magnetic-field induced SIT

Scaling of $R_s(B,T)$

- > collapse of the branches B<B_c and B>B_c onto a single curve
- > scaling prediction of the Bose-glass model independently confirmed

Isotherms R_s(B,T=constant)

- \succ crossing point (B_c,R_c)
- no magnetoresistance peak below 14 T

R. Schneider et al., Phys. Rev. Lett. 108, 257003 (2012)

Different tuning parameters

N. Marković et al., Phys. Rev. Lett. 81, 5217 (1998)

describes SIT in a 2D disordered system

describes SIT in a 2D ordered system

Summary

- > excess conductivity, BKT transition, large Gi
 - 2D character of superconductivity
 - importance of thermal fluctuations
- high sensitivity to disorder results in a thickness-driven SIT
- SIT also driven with magnetic field
- finite-size scaling according to the Bose-glass model
- > universality class of quantum percolation

Temperature-doping phase diagrams

Magnetism and superconductivity

Fe-based superconductors

Cuprate superconductors

Cho (2010)

T_c and structural details

Resistance tails

- evolution of resistance tails
- described by "Inverse Arrhenius law"

L. Merchant et al., Phys. Rev. B 63, 134508 (2001)

$$\mathbf{R}_{s}(\mathbf{T}) = \mathbf{R}_{s}(\mathbf{0}) \exp\left(\frac{\mathbf{T}}{\mathbf{T}_{0}}\right)$$

typical for granularity

R. Schneider et al., Eur. Phys. J. B 88, 14 (2015)

Granularity and weak links

- > 20-nm-thick film at the edge of the superconducting phase
- individual crystallites
- structureless homogeneous matrix
- > nonlinearities in the V(I) characteristics
- current-dependent resistance R=V/I
- > weak links with a broad distribution of low critical currents

Theory of boson localization

Fisher (1990)

- predicts a continuous SIT at T=0 as a result of the interplay of the attractive electron-electron interaction and the long-range coulomb repulsion
- SIT is a Quantum Phase Transition (QPT): Transition at T=0 between competing ground states of a quantum system when a parameter x in the Hamiltonian crosses a critical value

Value of the critical sheet resistance R_c is *universal* (independent of the material system and the microscopic details) and is equal to the *quantum resistance* R_q of electron pairs.

Insulating phase

Superconducting phase in a magnetic field

- > logarithmic field dependence ($U_0=0.098$ K, $B_0=8.85$ T)
- > possible creep-type dissipation mechanism
- > small values of U, low pinning barriers
- > power-law fit definitely fails

R. Schneider et al., J. Low Temp. Phys. 178, 118 (2015)

Insulating phase in a magnetic field

$$R_{\rm s} = R_0 \ln\left(\frac{T_0}{T}\right) + R_{\rm b}$$

D. Das, S. Doniach, Phys. Rev. B 57, 14440 (1998)

- weakly localized Cooper pairs (Bose glass)
- > vortices in a quantum liquid phase
- crossover from In to exp T dependence
- in line with bosonic description of SIT

R. Schneider et al., J. Low Temp. Phys. 178, 118 (2015)

