Superconductor-insulator transition in disordered FeSe thin films

R. Schneider1, A.G. Zaitsev1, D. Fuchs1, H. von Löhneysen1,2

Karlsruhe Institute of Technology

1Institut für Festkörperphysik and 2Physikalisches Institut

Thin Films and Interfaces
Outline

- overview of iron-based superconductors
- FeSe thin films: preparation and properties
- ordered FeSe thin films: excess conductivity and BKT transition
- disordered FeSe thin films: superconducting and insulating phases, superconductor-insulator transition
- disordered FeSe thin films in a magnetic field
- summary
Material classes of superconducting FePn / Ch

- **11** FeTe$_{1-x}$Se$_x$
 $T_c = 15$K for $x = 0.5$ and $T_c = 8$K for $x = 1$

- **122** A$_{1-x}$Fe$_{2-y}$Se$_2$
 $T_c \approx 32$K
 ($A = K, Rb, Cs, (Tl,K), (Tl,Rb)$)

- **122** BaFe$_2$As$_2$
 $T_c = 38$K in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$

- **111** LiFeAs
 $T_c = 18$K

- **1111** ReFeAsO$_{1-x}$F$_x$
 $T_c = 25 - 56$K

- **21311** Sr$_2$VO$_3$FeAs
 $T_c = 37$K
 "$(n+1)n(3n-1)22$"
Unit cells and structural motif

FeSe, LiFeAs, SrFe$_2$As$_2$, LaFeAsO/SrFeAsF, Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$

β - FeSe

- concentration range of the β-phase very small
- tetragonal phase turns to orthorhombic below 90 K
- structural transition not accompanied by magnetic ordering
- superconductivity sensitive to composition

Pressure effect

- largest among Fe Pn/Ch
- T_c increase to 37 K at 4 GPa
- connected with decreasing Se height
- superconductivity sensitive to structure

FeSe thin films: deposition and optimization

Surface and orientation

SEM
- 500 nm thick film
- smooth
- free of precipitates
- aligned grains
- rectangular shape
- sizes 100 to 400 nm
- lattice mismatch minimized to 5%

XRD
- (00l) Bragg reflections
- [001] FeSe || [001] MgO
- $a_{\text{film}} > a_{\text{bulk}}$
- small value of FWHM
- good growth quality
- fourfold rotational symmetry
- [100] FeSe || [110] MgO

Excess conductivity

- linear at low T
- parabolic with negative curvature at high T
- rounding of the transition

Excess sheet conductance per Fe-Se layer:

\[\Delta G_s = G_s - G_s^n \]
\[G_s = \frac{1}{R_s} \]
\[G_s^n = (a + bT)^{-1} \]

2D Aslamazov-Larkin theory:

\[\Delta G_s = \frac{e^2}{16\hbar} \frac{1}{\varepsilon} \]
\[\frac{e^2}{16\hbar} = 1.52 \times 10^{-5} \ \Omega^{-1} \]
\[\varepsilon = \ln \frac{T}{T_{MF}} \approx \frac{T - T_{MF}}{T_{MF}} \]

- 2D character of the superconducting fluctuations

L.G. Aslamazov, A.I. Larkin
Phys. Lett. A 26, 238 (1968)
BKT transition and Gi

2D Ginzburg - Levanyuk number Gi:

$$T_{BKT} = 5.5 \text{ K} \quad T_{MF} = 8.8 \text{ K} \rightarrow Gi = 5 \times 10^{-2}$$

A. Larkin, A. Varlamov
Theory of Fluctuations in Superconductors
N.Y.: Oxford University Press (2005)

- comparable to $YBa_2Cu_3O_{7-x}$
- large m and low n_s favor large Gi

- 2D superconducting fluctuations important in the layered FeSe compound

$$\ln \frac{R_s(T)}{R_s^0(T)} = a - bt^{-1/2}$$

$$t = \frac{T}{T_{BKT}} - 1$$

jump in α to 3 at $T_{BKT} \approx 4.7 \text{ K}$

V.L. Berezinskii, Sov. Phys. JETP **34**, 610 (1972)
High sensitivity to disorder

Thickness threshold at 300 nm

- bulklike features for \(t > 300 \) nm
- increase of \(\rho_0 \)
- decrease of RRR
- decrease of \(T_c \) with decreasing \(t < 300 \) nm

Fanlike set of curves

20 nm < \(t < 300 \) nm
- \(R_s(1.2K) \neq 0 \)
- \(R_s(0) \neq 0 \)

19 nm < \(t < 20 \) nm
- horizontal separatrix indicating SIT

\(t < 19 \) nm
- \(\frac{\partial R_s(T,t)}{\partial T} < 0 \)

Disorder driven SIT

\[R_s = R_c \cdot f \left(\frac{|t - t_c|}{T^{1/z}} \right) \]

\[z = 2.33 \pm 0.03 \]

- Boson localization
 - finite-size scaling of \(R_s \)
 - linear log-log plot provides \(z \)
 - \(z=1: \nu=7/3 \) consistent with universality class of quantum percolation

- Isotherms \(R_s(t,T=\text{const.}) \)
 - crossing point \((t_c,R_c)\)
 - strong exponential decrease of \(R_s \) with increasing \(t \)
 - crossover to weak \(1/t \) decrease

Quantum percolation

plateau transitions in quantum Hall liquids

Ultrathin YBa$_2$Cu$_3$O$_{7-x}$ films

$z_\nu = 2.2$
Scaling of $R_s(B,T)$

- collapse of the branches $B<B_c$ and $B>B_c$ onto a single curve
- scaling prediction of the Bose-glass model independently confirmed

Isotherms $R_s(B,T=constant)$

- crossing point (B_c, R_c)
- no magnetoresistance peak below 14 T

Different tuning parameters

- thickness d tuned SIT
 - $vz \approx 1.2$
 - universality class of classical percolation in 2D
 - describes SIT in a 2D disordered system

- magnetic field B tuned SIT
 - $vz \approx 0.7$
 - universality class of 3D XY model
 - describes SIT in a 2D ordered system
Summary

- reproducible synthesis of superconducting β-FeSe thin films by sputtering
- excess conductivity, BKT transition, large Gi
 - 2D character of superconductivity
 - importance of thermal fluctuations
- high sensitivity to disorder results in a thickness-driven SIT
- SIT also driven with magnetic field
- finite-size scaling according to the Bose-glass model
- universality class of quantum percolation
Temperature-doping phase diagrams

Magnetism and superconductivity

Fe-based superconductors

Cuprate superconductors

Cho (2010)
T_C and structural details

Huang (2010)

Bellingeri (2010)
Resistance tails

- Evolution of resistance tails
- Described by "Inverse Arrhenius law"

\[R_s(T) = R_s(0) \exp \left(\frac{T}{T_0} \right) \]

Typical for granularity

Granularity and weak links

- 20-nm-thick film at the edge of the superconducting phase
- individual crystallites
- structureless homogeneous matrix

- nonlinearities in the V(I) characteristics
- current-dependent resistance $R=V/I$
- weak links with a broad distribution of low critical currents
The theory of boson localization predicts a continuous SIT at $T=0$ as a result of the interplay of the attractive electron-electron interaction and the long-range Coulomb repulsion.

SIT is a Quantum Phase Transition (QPT): Transition at $T=0$ between competing ground states of a quantum system when a parameter x in the Hamiltonian crosses a critical value.

- **Bose Metal** with $R_c = R_q = h / (2e)^2$
- **Superconductor**
- **Insulator**

Value of the critical sheet resistance R_c is *universal* (independent of the material system and the microscopic details) and is equal to the quantum resistance R_q of electron pairs.
Insulating phase

![Graph showing the relationship between R_s and T](image)

- **strong localization**

- **sequence of exponential $G_s(T)$ dependencies**

(a) $T < 4K$ Efros-Shklovskii VRH

(b) $4K < T < 50K$ Mott VRH

(c) $50K < T < 160K$ Arrhenius

$$G_s = A_0 \exp \left(- \left(\frac{T_0}{T} \right)^{1/2} \right)$$
soft Coulomb gap

$$G_s = A_1 \exp \left(- \left(\frac{T_1}{T} \right)^{1/3} \right)$$
constant DOS

$$G_s = A_2 \exp \left(- \frac{\Delta E_A}{k_B T} \right)$$
hard gap

- **T-G-A dependencies**
Superconducting phase in a magnetic field

\[R_s = R_0 e^{-\frac{U(B)}{T}} \]

\[U(B) \approx B^{-2} \]

\[U(B) = U_0 \ln(B_0/B) \]

- logarithmic field dependence \((U_0 = 0.098 K, B_0 = 8.85 T)\)
- possible creep-type dissipation mechanism
- small values of \(U\), low pinning barriers
- power-law fit definitely fails

Insulating phase in a magnetic field

- weak localization
- $R_s = R_0 \ln \left(\frac{T_0}{T} \right) + R_b$
- $R_s = R_0 \ln \left(\frac{T_0}{T} \right) + R_b$
- weakly localized Cooper pairs (Bose glass)
- vortices in a quantum liquid phase
- crossover from ln to exp T - dependence
- in line with bosonic description of SIT