Superconductor-insulator transition in MoC ultrathin films Transport and STM studies

P. Szabó, J. Kačmarčík, P. Kulkarni, T. Samuely, J.G. Rodrigo & P. Samuely Centre of Ultra Low Temperature Physics Košice, Slovakia

(transport & STM measurements)

M. Žemlička, P. Neillinger, M. Trgala & M. Grajcar Comenius University, Bratislava, Slovakia (samples & microwave measurements)

SUPPRESSION OF $T_{\rm c}$ IN THIN FILMS

first noticed in 1938, Nature (London) by Shalnikov in Pb and Sn films ~ hundreds of nm thin

SUPERCONDUCTOR - INSULATOR TRANSITION (SIT)

VOLUME 64, NUMBER 25

PHYSICAL REVIEW LETTERS

18 JUNE 1990

WHAT CONTROLS $T_{\rm c}$?

PHYSICAL REVIEW B VOLUME 1. NUMBER 3 1 FEBRUARY 1970 Destruction of Superconductivity in Disordered Near-Monolayer Films* Myron Strongin, R. S. Thompson, O. F. Kammerer and J. E. Crow $T_{\rm c}$ versus sheet resistance Brookhaven National Laboratory, Upton, New York 11903 $T_{\rm c}$ versus resistivity ρ $T_{\rm c}$ versus inversed thickness seems as best correlation 5 ¥ ٍ 4 ÷. 2 10 30 40 50 20 100 (Å-1) ρ(IO⁻⁵Ω-cm) FIG. 6. Te versus inverse thickness (see Fig. 5 for symbol notation). FIG. 7. T_o versus resistivity ρ (see Fig. 5 for symbol notation). 3000 4000 1000 2000 R_□Ω/sq Pb and Bi films on dif. substrates

FIG. 5. T_c versus R_{\Box} where R_{\Box} is the resistance/sq area: \oplus , \blacksquare —Pb on Ge; +—Pb on Al₂O₂; \blacklozenge , \diamondsuit —Pb on Ge (deposited at room temperature); *—Bi on SiO; ∇ , \otimes , \bigcirc , \bullet , \triangle , \blacktriangle , \blacktriangledown —Pb on SiO.

Preparation of our MoC thin films

Reactive magnetron sputtering, target Mo 99.95% in mixture of Ar and acetylene gas on singleXtalline saphire @ 200 C

Trgala et al., Appl. Surf. Sci. 2014

Transport in MoC thin films

- \checkmark sharp transitions @ T_c for different d
- \checkmark sheet resistance $R_{\rm S}$ increase from 50 to 1400 Ω
- ✓ small quantum corrections due WL and EEI
- $\checkmark T_c$ shift from 8 K to 1K

=> electrically continuous/homogeneously disordered films

 \checkmark two 10 & two 5 nm films with different T_c due small change in preparation conditions

Thickness effect

- a) Thickness dependence of $R_s \sim (d d_c)^{-1.3}$ in classical percolation theory => $d_c = 1.3$ nm, minimum thickness for electrical continuity (MIT)
- b) Thickness dependence of $T_c(d) = T_{c0}(1-d_{cs}/d)$ within **GL calculations** (Simonin, 1986) with a **surface term** (decreased DOS) => $d_{cs} \sim 2.5$ nm (good fit for optimally prepared films)

 $d_{cs} > d_c =>$ first SMT and then MIT

Transport in MoC thin films

4-probe measurements in Corbino geometry

- Suppression of T_c is due to suppression of the amplitude of the sc order parameter
- Balance between sc attraction and Coulomb repulsion does not lead to full localization of electrons
- Two transitions: superconductor => (bad) metal & metal => (fermionic) insulator

Agreement between Finkel'shtein model and experiment

Fitting parameter $\gamma \sim 5 - 8$

Finkel'stein model

Valid for 2D superconductors: $k_B T_{c0} \ll \hbar / \tau \ll \hbar D / d^2$

 τ -relaxation time of qp momentum in normal state

<u>**hD/d² – Thouless energy**</u> related to time t_D for qp diffussion through film with thickness d. In 2D films => l >> d

If $l \ll d$ but still $k_B T_{c0} \ll \hbar D/d^2$

In Finkel'stein formula the scattering term \hbar/t must be replaced by Thouless energy $\hbar D/d^2 = (\hbar/\tau)(l/d)^2$

$$\begin{aligned} \operatorname{Tc} &= \operatorname{Tc0} * \exp(\gamma) \left[\frac{1/\gamma + t/4 - \sqrt{t/2}}{1/\gamma + t/4 + \sqrt{t/2}} \right]^{(l/\sqrt{2t})} & \longrightarrow \\ \gamma' &= \ln \left[\frac{\hbar D}{d^2 k_B T_{c0}} \right] = \ln \left[\frac{\hbar}{\tau k_B T_{c0}} \left(\frac{l}{d} \right)^2 \right] \\ \gamma &= \ln \left[\frac{\hbar}{k_B T_{c0} \tau} \right] \quad r = R/(R_Q \pi) \end{aligned}$$

but this make much smaller effect on T_c ...

In the following we determine the Thouless energy in MoC films and compare with $k_B T_{c0}$ and \hbar / τ

Thouless energy: 2D vs 3D character of MoC films

Disordered metal: Bloch-Gruneisen (dR/dT > 0) + **quantum corrections** to sheet resistance (dR/dT < 0)

 $T_T =$

Quantum corrections = weak localization + Altshuler-Aronov can be used to test 2D or 3D character of the electron transport

In quasi-2D : $l < d < \xi, L_T$

l: mean free path, *d*: film thickness, ξ : coherence length

 L_T : thermal coherence length *D*: diffusion coefficient

$$L_T = \sqrt{2\pi \hbar D / (k_B T)}$$

WL + AA in conductivity =>

$$\frac{\Delta G^{\mathrm{WL}}(T) + \Delta G^{\mathrm{ID}}(T)}{G_{00}} = A \cdot \ln \left[\frac{k_{B}T\tau}{\hbar}\right]$$

In 3D:
$$l, L_T < d < \xi$$

WL + AA in conductivity =>

$$\Delta G^{AA} + \Delta G^{WL} = A\sqrt{T} + BT^{p/2}$$

Determination of Thouless energy from B_{c2}

• We determined $B_{c2}(0) = 0.69(dH_{c2}/dT)T_c$; also $\xi(0) = \sqrt{(\Phi_0/2\pi B_{c2}(0))}$

• Diffussion constant
$$D = \frac{0.407\pi k_B}{e} \left(\frac{dH_{c2}}{dT}\right)^{-1}$$

- transverse Thouless energy $\pi\hbar D/d^2$ determined
- =>> Thouless energy is below 100 K for all MoC films (see Table) $k_{\rm B}T_{\rm c0} < (hD/d^2 \sim 10 k_{\rm B}T_{\rm c}) << \hbar/\tau$

but then the renormalized Finkelstein makes small effect on Tc

(Same arguments hold for MoGe, Graybeal & Beasley, TiN, Baturina,)

Effectively Finkelstein mechanism does not work What is the real mechanism of T_c suppression ?

k_F*I* from Hall & resistivity measurements

- We measured te Hall coefficient from Hall voltage deduced from field sweeps +- 8T @ 200 K
- Charge-carrier density determined $n \sim 10^{23}$ cm⁻³ not changing upon decrease of thickness (!!)

$$k_F l = \frac{\hbar (3\pi^2)^{2/3}}{e^{5/3}} \left[\frac{R_H^{1/3}}{R_{\Box} d} \right]$$

• loffer-Regel product $k_F l$ determined; drops from 4.1 (15nm) to 1.3 (3 nm)

<i>d</i> [nm]	<i>R</i> _s [Ω] @ 288 K	<i>T_c</i> K)	<i>R</i> _H x10 ¹¹ [ΩmT ⁻¹]	<i>N</i> *10 ²³ c m ⁻³	$k_{ m F}.l$	<i>H</i> _{c2} [T]	ζ[nm]	D[cm²/s]	$\pi^2 \hbar D/d^2$ [K]
30	56	7.95	_	-	_	_	-	-	-
20	95	7.6	_	-	-	-	-	-	-
15	120	7.4	3.75	1.7	4.1	10.7	5.48	0.52	17.4
10	263	6.5	3.75	1.7	2.8	9.4	5.78	0.53	40
10	344	4.9	3.13	1.9	2	9.5	5.8	0.39	29.4
5	850	2.86	3.8	1.7	1.46	5.3	7.8	0.39	118
5	1100	2.3	3.8	1.7	1.34	5.3	7.8	0.33	100
3	1227	1.3	3.9	1.7	1.3	_	_	-	-

$T_{\rm c}$ versus $k_{\rm F}l$

- We found that T_c follows the best $k_F l$, better than Finkelstein T_c (R_s), even films with the same thickness but different T_c and R_s are well fitted.
- The data can be fit to the Anderson localization model $T_c = T_{c0}(1 [(k_F l)_c^2/(k_F l)]^2)$ with $(k_F l)_{cs} \approx 1.2$ and $T_{c0} = 8.2$ K.
- sheet conductance 1/ R_S as a function of $k_F l$ is almost linear with $(k_F l)_c \rightarrow 1$

 $(k_F)_{cs} > (k_F)_c =>$ first SMT and then MIT

II. Local DOS by STM/S

STM NEAR SIT TRANSITION

Superconductivity: macroscopic wave function with amplitude Δ and phase ϕ

 $\Psi = \Delta e^{i\varphi(r)}$

Fermionic mechanism

Disorder-enhanced Coulomb int. destroys Copper pairs => **SMT** At higher disorder bad metal goes to Fermi insulator via **MIT Amplitude fluctuations**

Bosonic mechanism

Superconductor => directly to insulator **SIT** Cooper pairs survive with finite Δ without long range phase coherence **Phase fluctuations**

Local studies of superconductivity (Δ) by Scanning Tunneling Spectroscopy are chalenging

Scanning tunneling spectroscopy in ultrathin TiN films

Film thickness 3-5 nm, coherence length ξ =10 nm, strong quantum corrections

Sacepé et al., PRL2008

Planar tunnel junctions on real insulating film compared with superconducting film

Gap remains about same in insulating phase, but coherence peaks are missing

amorphous InO_x films

Sherman, PRL 2012

NbN films studied by Roditchev

Fading out of vortex image Lost phase coherence

STS phenomenology

On approach to SIT

- ✓ Δ decrease more slowly than T_c , $2\Delta/k_BT_c$ increase
- ✓ Δ inhomogeneity on scale of ξ
- ✓ pseudogap appearance
- \checkmark coherence peaks in SC DOS suppression
- ✓ Fading out of vortex image
 All support bosonic scenario
- Is bosonic scenario universal ?
- Or scenario depends on material parameters ?
- If yes, how ?

STM - experimental setup in Košice

- home made STM head
- Dulcinea SPM controller by Nanotec
- 280mK: Janis SSV 3He refrigerator
- 8T Janis cryomagnetic system

Scanning Tunneling Spectroscopy (STS)

S-I-N junction with Au tip

 $dI(V)/dV \propto A \int N_s(E) \left[\partial f(E-eV)/\partial f(eV)\right] dE$

Low temperatures are important to resolve from

Finite lifetime effect (Dynes formula):

$$N_{S}^{BCS} = \operatorname{Re}\left\{\frac{E - i\Gamma}{\sqrt{(E - i\Gamma)^{2} - \Delta^{2}}}\right\}$$

STM on 10 nm MoC film

5 nm MoC film

 $E - i\Gamma$

 $\sqrt{(E-i\Gamma)^2-\Delta^2}$

T = 0.45

atomic lattice Γnot from some dead layer

 $N_s^{Dynes} = \text{Re}$

 $= 0.3\Delta$

Polycrystalline films, oblate Xstal ~ 10 nm corrugation ~ 0.7 nm

Up to 100 spectra along 200 nm line Variation of the peak distance ~ 10% (see further)

 $\Delta(T)$ BCS-like, broadening Γ increases with T

Origin of variation of the gap value in 5 nm MoC

95 x 65 nm² topography

Corrugation of 1.5 nm and gap profile (10% variation) along gray lines

gap map of same area

Spectra averaged over green & blue rectangles

Variation of gap-peak position follows surface corrugation !

Vortex imaging on 5 nm MoC film

Spectrum along vortex in dirty SC

surface area 220 x 190 nm² T = 450 mK, B = 1 T, Abrikosov lattice a = 50 nm distorted vortex lattice,

presence of vortices in MoC suggests long range phase coherence of the superconducting condensate

3 nm MoC film

Summary of STM/S

STM spectra in MoC upon increased disorder (T_c from 8K down to 1 K & k_F / from 4 to 1)

- Little variation of the gap
- T_c and Δ decrease almost same way with $2\Delta/k_BT_c \sim 3.8$
- No pseudogap
- Presence of vortices suggest global phase coherence

=> Fermionic scenario !

• Increasing in-gap states (described by Dynes Γ) =>> what mechanism of pair breaking?

Conclusions

Ultrathin films from 30 down to 3 nm thin prepared with T_c decreasing from 8 K down to 1 K, sheet resistances up to 1400 Ohm and k_FI ~1; films are not enough 2D for Finkelstein model

STM/S

- sc phase/order parameter is homogeneous in space
- T_c and Δ decrease in same way with $2\Delta k_B T_c \sim 3.7 3.9$
- Increasing in-gap states (Γ) or gapless SDOS

(CWR transmission

• Strong pair breaking out of Mattis-Bardeen scenario)

Questions

- Mechanism of Tc suppression for films with *I* << *d* ?
- Mechanism of pair breaking leading to gapless SDOS ?
- (Mechanism of strong losses in CWR ?)

III. Complex conductivity in coplanar wave resonator

Complex conductivity from transmission of CWR

CWR patterned on 10 nm MoC film by optical lithography/etched by ion milling

Transmission measurements => temp. dependence of

- resonance frequency f_0 (~ imaginary part of impedance ~ inductance)
- quality factor Q (~real part of impedance ~ resistive losses)

Losses at low temperatures are much higher than predicted by Mattis-Bardeen Extra pair breaking present

See also Driessen, Klapwijk PRL 2012 who introduced broadened DOS due mesoscopic fluctuations

 $\begin{array}{c} 1.5 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.1 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0 \end{array} \begin{array}{c} 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0 \end{array} \begin{array}{c} 1.1 \\ 1.1 \\ 1.2 \\ 1.1 \\ 0 \end{array} \begin{array}{c} 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0 \end{array} \begin{array}{c} 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 0 \end{array} \begin{array}{c} 1.1 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0 \end{array} \begin{array}{c} 1.2 \\ 0 \end{array} \begin{array}{c} 1.1 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0 \end{array} \begin{array}{c} 1.2 \\ 0 \end{array} \begin{array}{c} 1.1 \\ 0 \end{array} \end{array}$

Resonance frequency falls below Mattis-Bardeen prediction

M. Žemlička, submitted