Valley polarisation assisted spin polarisation in Si MOSFETs

Vincent Renard vincent.renard@cea.fr

Université Grenoble Alpes / CEA INAC

Thanks

K. Takashina

B. Piot

A. Fujiwara

G. Fleury

Pillo

X. Waintal

Single particle picture

Previous results

Our samples / results

Comparison with Quantum Monte carlo / Discussion

Advertising

Single particle picture Valley unpolarised 2DEG

GRENOBLE ALPES

Single particle picture Valley polarised 2DEG

UNIVERSITÉ GRENOBLE ALPES

Determination of B_p Magnetoresistance in parallel magnetic fields

2DEG (thin)

GRENOBLE

Okamoto et al. PRL 32, 3875 (1999), Pudalov et al. PRL 88, 076401 (2002)

Determination of B_p Magnetoresistance in parallel magnetic fields

GRENOBLE AL PES

Real 2DEG

Okamoto et al. PRL 32, 3875 (1999), Pudalov et al. PRL 88, 076401 (2002)

Previous results

Shayegan *et al.* Phys. Rev. Lett. **92** 246804 (2004); PRB **78**, 161301(R) (2008); PRB, **81** 235305 (2010)

GRENOBLE

ALPES

Our samples Si quantum wells on insulators

Si Crystal

Bulk

Confined in z direction

Diamond structure

6 valleys

2 valleys

$$m_l = 0.9m_0$$
$$m_t = 0.2m_0$$

Our samples Si quantum wells on insulators

thermal oxide

SIMOX oxide

Samples from NTT BRL (Atsugi, Japan)

Image by D. Cooper @ Leti

Our samples Valley polarisation

GRENOBLE

8

K. Takashina et al. PRL (2006)

K. Takashina et al. PRL (2006)

UNIVERSITÉ GRENOBLE ALPES

GRENOBLE

ALPES

Magnetoresistance

Valleyresistance

K. Takashina *et al.* PRL (2011),PRB (2013)

Dependence of B_p on valley polarization $\ensuremath{\mathsf{Experiment}}$

Consistent with measurements in AIAs

GRENOBLE

11

Shayegan et al. PRL (2004), PRB (2008), PRB (2010)

Comparison with non-interacting theory

$$r_s = \frac{1}{(\pi n^{-1/2})a_B}$$

GRENOBLE

ALPES

Role of disorder

Pudalov et al. PRL 88, 076401 (2002)

GRENOBLE

Exclusion of disorder magnéto- and valley-resistance

GRENOBLE

Quantum Monte Carlo

Si at $p_v = 0$

ingredients: interactions and white noise disorder

input : sample mobility at high density

Fleury & Waintal PRB (2010)

GRENORI P

Quantum Monte Carlo With Valley polarization

GRENOBLE

Experiment vs QMC

17

GRENOBLE ALPES

Discussion QMC with valleys in clean 2DEG

18

GRENOBLE

QMC in clean 2DEG by Conti and Senatore EPL (1996)

Discussion What does our result tell us?

▶ $p_v = 0$ is more stable vs ferromagnetic instability than $p_v = 1$

> The prediction remains valid in disordered systems

Renard et al. Nature Comm. 6, 7230 (2015)