

Novel energy scale in correlated 2D electron system

V.M. Pudalov, L.A. Morgun, A.Yu. Kuntsevich

Lebedev Physical Institute, Moscow

Motivation

Electron-electron correlations in 2D systems manifest in:

- "Metallic" T-dependent conduction,
- Metal-Insulator Transition (MIT),
- Giant positive MR in B_{\parallel} field,
- Negative Compressibility,
- Strong enhancement in *m**, χ, *g*-factor, etc.

These effects are traditionally explained in the FL framework, presuming a homogeneous single-phase state of the 2D system

However, there are a number of theoretical suggestions and experimental data in favor of breaking homogeneous **FL-state** as *r*_s **increases.**

How these may be revealed in transport and thermodynamics ?

$$a_{\sigma} = \left[\frac{1}{2\rho^2}\frac{\partial^2\rho}{\partial B^2} - \frac{1}{\rho^3}\left(\frac{\partial\rho}{\partial B}\right)^2\right]_{B=0} = \frac{1}{2\rho^2}\frac{\partial^2\rho}{\partial B^2}$$

✓ Puzzling high-T regime sets at

How T^* may show up in other available low field data at B < T? \checkmark 2. Transport in B=0

✓ 3. Thermodynamic spin magnetization in weak field

Sign change of $d\chi/dn$: critical behavior

N.Teneh, AK, VP, M.Reznikov, PRL 109 (2012)

The two phase state

Phase diagram

Attributes of the seeming critical phenomena (QPT)

10⁰

10

 10^{2}

16

 10^{-1}

10¹

 10^{-1}

 10^{0}

 T/T_0

 10^{3} 10^{3} Mirror-reflection 10^{2} $\rho(\Delta n, T)/\rho_c$ symmetry: 10 $= \rho_c / \rho(-\Delta n, T)$ $\Gamma_{o}(\mathbf{K})$ 10^{2} 10° •Scaling 10 $\rho/\rho_{\rm c} = f[T/T_0(n)]$ 10^{1} 10 $\frac{|n|}{|n|} - n_{\rm c} |(10^{11} \, {\rm cm}^{-2})|$ ρ (hle²) •Critical behavior $T_0 \propto |n - n_c|^{-ZV}$ 10⁰ Symmetry: holds here 10⁻¹ $n_{\rm c}$ =6.46x10¹⁰ cm⁻² 12.4x10¹⁰ cm⁻² S.V. Kravchenko, et al. PRB 1995 10^{-2} 10⁻²

July 16, 2015

assuming 2 channel scattering

$$\rho(B,T) = \left[\sigma_D - \delta\sigma \cdot \exp\left(-T/T_B\right)\right]^{-1} + \rho_1 \exp\left(-\alpha \frac{n - n_c(0)}{T} - \beta \frac{B^2}{T} - \xi \frac{B^2}{T^2}\right)$$

Fitting parameters

 ρ is in (kΩ/□), density - in 10¹¹cm⁻², $n_c = 0.88$, α - in K/10¹¹cm⁻²

a			6. S		
n	$ ho_D$	$ ho_1$	α	$\beta ({ m K}/{ m T}^2)$	$\xi (\mathrm{K}^2/\mathrm{T}^2)$
1.5	1268	14362	4.53	-0.0160	-0.08
1.996	901	9564	4.35	-0.0080	-0.09
2.5	662.2	6937	4.28	-0.0043	-0.11
3.25	501.5	5202	4.24	-0.0019	-0.15
5.252	336.14	3456.6	4.18	-0.0005	-0.19

Consequence 1: $\rho(T)$ data interpretation in the vicinity of n_c

Consequence 1: $\rho(T)$ data interpretation in the vicinity of n_c

 $\succ T_{kink} \approx T^*$ represents a **ballistic** physics

 \succ $T^* < T_{max}$ always

$$\succ T^* \rightarrow 0$$
 for $n \rightarrow n_c$,

Hence, T_{max} always belongs to the ballistic interaction regime

Hence, ρ(T) maximum is not a hallmark of the RG flow

RG results

A.M.Finkelstein, A. Punnoose PRL (2002)

July 16, 2015

Fixed point

A. Punnoose , A.M.Finkelstein, Science (2005)

Zero field transport in the critical regime

Consequence 2: $a_{\sigma}(T) \propto 1/T^{2+\epsilon}$ dependence at $T^* < T \le T_{max}$ is a mimicry of the diffusive regime.

In fact, this is a high-T phenomenon

Excessive T-dependence of $\Delta\sigma$ was interpreted as $\gamma_2(T)$

D. A. Knyazev, O. E. Omel'yanovskii, V. M. P., I. S. Burmistrov, JETP Lett. 84, 662 (2006). S. Anissimova, S.V.Kravchenko, A. Punnoose, A.M.Finkelstein, T.M.Klapwijk, Nat.Phys. (2007)

Conclusions

- ✓ A novel energy scale *T** < *T*_F in a 2D electron system. It separates the "low-T" ballistic regime of interactions and a novel regime observed in transport at B=0 and B≠0, and in magnetization.
 *T** may be related with the energy level structure of the minority phase ("spin droplets"), revealed in magnetization measurements.
- ✓ **T**^{*} is a consequence of e-e correlations, since all these effects (i.e. T_{kink} , T_{infl} , $T_{d\chi/dn}$) are missing in low mobility samples (disordered, with a weak e-e interaction)
- ✓ Interpretation of preceding experimental data on the weak field MR in framework of the FL parameters needs to be refined
- ✓ MR in the regime T>T* mimics the behavior expected for the diffusive regime of interactions. This may affect interpretation of the MR in the critical regime of MIT

Thank you for attention!