Characteristics of the Superconductor-Metal-Insulator transitions in thin Nb_xSi_{1-x} films

C.A. Marrache-Kikuchi

COLLABORATORS

Olivier Crauste François Couëdo

Vincent Humbert Laurent Bergé Louis Dumoulin

Financed by :

OUTLINE OF THE TALK

- 1. Motivation
- 2. NbSi thin films
 - + System characterization
 - + 3 ways of tuning the disorder
- 3. Destruction of superconductivity in NbSi films
 - + 2 intermediate metallic phases
- 4. Onset of the insulating regime

MOTIVATION i. Superconductor – Metal – Insulator

MOTIVATION

ii. Superconductor – Insulator

MOTIVATION

iii. Electronic inhomogeneities

A-NBSI THIN FILMS

System characterization

3 ways of tuning the disorder

NBSI THIN FILMS

Synthesis

NBSI THIN FILMS

General characteristics

- Morphology :
 - Continuous down to 2.5 nm (at least)
 - Amorphous
- Mean free path I = 2.6 Å to 5 Å
- Electronic density n ~ a few 10²⁷ m⁻³
- Superconducting coherence length $\xi \sim 50 \text{ nm for } T_c=1 \text{K}$
- Heat treatment :
 - No modification of n
 - No modification of the composition x

Nava et al., J. Mat. Res., 1 327 1986

DESTRUCTION OF SUPERCONDUCTIVITY IN NBSI FILMS

2 dissipative phases

Fine-tuning the disorder

29/06/2015

« METAL 1 » PHASE Superconductor – Metal 1 Transition

« METAL 1 » PHASE

Minimum resistance

« METAL 1 » - « METAL 2 » TRANSITION

3 distinct criteria

18

« METAL 2 » PHASE

Universal behavior of R_{min}

" METAL 2 » - INSULATOR TRANSITION Energy scale T₀

Vanishing of the T₀ and σ_{min} at $(\mathbf{k_F}\mathbf{l})_3 \approx 1$

PHASE DIAGRAM

PHASE DIAGRAM

ONSET OF THE INSULATING REGIME

ONSET OF THE INSULATING REGIME From the Metal 2 phase

SAMPLES Near the « Metal 2 » - Insulator transition

EVOLUTION WITH ANNEALING

 2 dissipative phases observed, possibly linked to inhomogeneous electronic phases

Gradual evolution from metallic
 to insulating phase

SC

40

 $\sigma_{_{
m C2}} \sigma_{_{
m C2}} \sigma_{_{
m C2}}$

50

THANK YOU FOR YOUR ATTENTION !