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In 1979, a powerful theory was created by the “Gang of Four”
(Abrahams, Anderson, Licciardello, and Ramakrishnan), according to
which, there i1s no conductivity in 2D at zero temperature.

This became one of the most influential paradigms in modern
condensed matter physics.



Ohm's law In n dimensions

3d: G=1R=cA/lL=0cL
2d: G=ocl/L=0c
1d: G=c/L

nd: G=o LM



d(InG)/d(InL) = B(G) i G =1/R ~ L"2g/lioc
Abrahams, Anderson, Licciardello, and <«—— \ \

Ohm’s law
In n dimensions

| <0)

L>> Loc In(G) L <<Ljoc
Works for non-interacting (!) electrons
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In 2D, the Kinetic (Fermi) energy is proportional to the electron density:

E. = (th?/m) N,

while the potential (Coulomb) energy is proportional to N./2:

E. = (e?/g) N2

Therefore, the relative strength of interactions increases as the density decreases:

electron density
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Why Si MOSFETs?

It turns out to be a very convenient 2D system to study strongly-interacting regime
because of:

* Relatively large effective mass (0.19 m, )

« Two valleys in the electronic spectrum

« Low average dielectric constant €=7.7

As a result, at low densities, Coulomb energy strongly exceeds Fermi energy: E- >> E.

. = Ec / EL >10 can be easily reached in clean samples.

For comparison, in n-GaAs/AlGaAs heterostructures, this would require 100 times lower
electron densities. Such samples are not yet available.
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This Is what it is expected to look like (weakly-interacting electrons)...

Sid6 B=0 (a) (Pudalov et al.)
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...but this 1s what 1t looks like when the
electron-electron interactions are strong
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S.V.K. and Klapwijk, PRL 2000
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Reaction of referees (1993):

Referee A:
“The paper should not be published in PRL. Everyone knows
there is no zero-temperature conductivity in 2-d.”

Referee B:

“The reported results are most intriguing, but they must be wrong.
If there indeed were a metal-insulator transition in these systems,
it would have been discovered years ago.”

Referee C:
“I cannot explain the reported behavior offthand. Therefore, it must

be an experimental error.”



Timeline:

1993: Metal-insulator transition in 2D is discovered.
Paper submitted to Phys. Rev. Lett. and rejected.
Proposal submitted to NSF and declined.

1994: Proposal submitted to NSF and declined.

1995: Proposal submitted to NSF and declined.

1996: Proposal submitted to NSF and declined.

1997: Proposal submitted to NSF and declined.

However, also in 1997....



...a similar transition has been
observed in other 2D structures:

*p-Si:Ge (Coleridge’s group; Ensslin’s
group)

*p-GaAs/AlGaAs (Tsui’s group,
Boebinger’s group)

p ()

*n-GaAs/AlGaAs (Tsui’s group,
Stormer’s group, Eisenstein’s group)

*n-Si.Ge (Okamoto’s group)

*p-AlAs (Shayegan’s group)

T (K)
(Hanein, Shahar, Tsui et al., PRL 1998)
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VOLUME 44, NUMBER 19 PHYSICAL REVIEW LETTERS 12 May 1980

Interaction Effects in Disordered Fermi Systems in Two Dimensions

B. L. Altshuler and A. G. Aronov
Leningvad Nucleay Physics Institute, Gatchina, Leningrad 188 350, U.5.5.R.

and

P. A, Lee
Bell Labovatories, Murvay Hill, New Jevsey 07974
(Received 11 February 1980)

Interaction effects in disordered Fermi systems are considered in the metallic regime,
In two dimensions, logarithmic corrections are obtained for conductivity, density of states,
specific heat, and Hall constant. These results are compared with a recent theory of lo-
calization as well as some experiments.

bo=(e*/4nF)(2 - 2F) In(TT)

» always insulating behavior
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Zeitschrift fur Physik B (Condensed Matter) -- 1984 -- vol.56, no.3, pp. 189-96

Weak localization and Coulomb interaction in disordered systems

Finkel'stein, A.M.
L.D. Landau Inst. for Theoretical Phys., Acad. of Sci., Moscow, USSR
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More recent development: two-loop RG theory

disorder takes over

10

o0

disorder

(=]

2D electron gas obtained by solving Eqs. (4) and \a) with

the Cooper channel included (o = 1), Arrows indicNe the

direction of the flow as the temperature is lowered. ThNcir-

cle denotes the quantum critical point of the metal-insuldor 10 : :

transition, and the dashed lines show the separatrices. 0 500 1000 1500
T{mK)

Punnoose and Finkelstein, Science metallic phase stabilized
310, 289 (2005 : i
(2099 by e-e interaction
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Experimental test

First, one needs to ensure that the system is in the diffusive regime (Tzr<1).

One can distinguish between diffusive and ballistic regimes by studying
magnetoconductance:

- - diffusive: low temperatures, higher disorder (Tt < 1).
_ - ballistic: low disorder, higher temperatures (Tt > 1).

The exact formula for magnetoconductance (Lee and Ramakrishnan, 1982):

AG(B’T):/_«A[O.Z%GZ } 72(72 +1)-[Q”B jZ[EJZ

2
2 valleys ﬁ for ( OitgB ] <1
IS KgT

In standard Fermi-liquid notations, 2/, =

1+ F,°



Experimental results (low-disordered Si MOSFETS;

“just metallic” regime; n=9.14x10%° cm=):
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Temperature dependences of the
resistance (a) and strength of interactions (b)
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Experimental disorder-interaction flow diagram of the 2D electron liquid
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Solutions of the RG-equations for p << wh/e?:
a series of non-monotonic curves p(T). After
rescaling, the solutions are described by a single
universal curve:

p(T) =p,, R(M)
N=p.Jn(T . /T)

For a 2-valley system (like St MOSFET),
metallic p(T) sets in when y, > 0.45

7117/2015

p(T)

V2(T)
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Comparison between theory (lines) and experiment (symbols)

(no adjustable parameters used!)
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Extrapolated polarization field, B,
vanishes at a finite electron density, n,
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Spontaneous spin polarization at n, ?



(Shashkin et al., PRL 2001)
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suggested by B. I. Halperin (1998); first implemented by O. Prus, M. Reznikov, U. Sivan et al. (2002)
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Integral of the previous slide gives M (n,):
complete spin polarization
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Effective mass vs. g-factor

Zala, Narozhny, and Aleiner, PRB 2001) :
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p (Q/square)

Another way to measure m*:

amplitude of the weak-field Shubnikov-de Haas oscillations
VS. temperature
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Yet another way to measure the
effective mass: Thermopower

In the low-temperature metallic regime, the diffusion thermopower of
strongly interacting 2D electrons is given by the relation

(Dolgopolov and Gold, 2011)



Thermopower : S =- AV / (AT)
S=S9+S9=qT+pT

AV : heat either end of the sample, measure the induced
voltage difference in the shaded region

AT : use two thermometers to determine the temperature
gradient
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Divergence of thermopower
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1/S tends to vanish at n
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Critical behavior of thermopower
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Since S/T o m/n, divergence of the thermopower indicates a divergence of the effective mass:
m o n,/(ng — ny)

We observe the increase of the effective mass up to m = 25m, = 5m_!!
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A divergence of the effective mass has been
predicted...

using Gutzwiller's theory (Dolgopolov, JETP Lett. 2002)

solving an extended Hubbard model using dynamical mean-field
theory (Pankov and Dobrosavljevic, PRB 2008)

from a renormalization group analysis for multi-valley 2D systems
(Punnoose and Finkelstein, Science 2005)

by Monte-Carlo simulations (Marchi et al., PRB 2009; Fleury and
Waintal, PRB 2010)

using an analogy with He® near the onset of Wigner crystallization
(Spivak and Kivelson, PRB 2004)



Transport properties of the insulator
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If the insulating state were due to a
single-particle localization, the
electric field needed to destroy it
would be of order (the most
conservative estimate)

Eth ~Wb /Ie ~ 103— 104 V/m

However, in experiment
E,=1-10V/m!

De-pinning of a pinned Wigner
solid?




SUMMARY:

Competition between electron-electron interactions and disorder leads to
the existence of the metal-insulator transition in two dimensions. The
metallic state is stabilized by the electron-electron interactions. Disorder-
Interactions flow diagram of the metal-insulator transition reveals a
guantum critical point.

In the clean (ballistic) regime, spin susceptibility critically grows upon
approaching to some sample-independent critical point, n,, pointing to the
existence of a phase transition.

The dramatic increase of the spin susceptibility is due to the divergence of
the effective mass rather than that of the g-factor and, therefore, is not
related to the Stoner instability. It may be a precursor phase or a direct
transition to the long sought-after Wigner solid.

However, the existing data, although consistent with the formation of the
Wigner solid, are not enough to reliably confirm its existence.



