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Random-field XY spin-1/2 model and its physical origin
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Local tunneling conductance

Spectral signature of localized Cooper pairs in disordered superconductors.
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Andreev point-contact spectroscopy
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Theory: Cooper pairing of electrons in localized eigenstates
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FIG. 25: (Color online) Virial expansion results for T, (red
points) and typical pseudogap Ap  (black) as functions of E'r.
The model with fixed value of the attraction coupling constant
q = 1.7 was used; pairing susceptibilities were calculated using
equations derived in Appendix B.

Transition exists evenat o, >> T,

versus Pseudogap
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FIG. 26: (Color online) Virial results for T, (red points), typi-
cal pseudogap A p (black) and the corresponding level spacing
&p (green), as functions of Er on semi-logarithmic scale.

Ap >> T

and



Single-electron states suppressed by pseudogap
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“Pseudospin” approximation

Similar Hamiltonian appears in the study of JJ arrays
If off-set charge disorder is taken into account
- see talk by Lev loffe



Bethe lattice approximation and quantum phase transition

Phys.Rev. B 82, 184534 (2010)
M. Feigelman, L.Ioffe, M. Mezard
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Nontrivial distribution function for O.P.
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General recursion:
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Vicinity of the
Quantum Critical
Point
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typical value near the T=0 critical point
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No long-range order at g < g ;
What is the nature of excitations ?

Criteria for localization in the interacting system

* 1. Level statistics (Poisson vs WD statistics of the full
system spectrum)

e 2. Do local excitations decay completely ?

* 3. Does the external noise propagate
into the interior of the system ?
S e (many others)

What determines a boundary of the coherent (noiseless) state ?

Extensive energy (i.e. temperature) v/s intensive (excitation) energy ?
10



Full phase diagram: previous results
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Level statistics of disordered spin-1/2 systems

and materials with localized Cooper pairs
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refers to the sector with 5, =0 tor the model (1) with J*=0, detined on a =3 random graph with bandwidth W=1. Panel a shows the statistics of the
low-energy excitations in the energy interval (Eggr Eg5+’|.5). Data points are shown for system sizes N=14 (black dots), N=16 (red), N=18 (blue), N=2
(green) and N=22 (violet). The critical value of the coupling /¥ =0.095:+0.003 is determined via a crossing point analysis. Panel b shows similar resul
for intermediate excitation energies, (Egs+1.5, Eg +2.5), leading to the critical point 1 =0.06640.002. Panel ¢ corresponds to high energies, close to'
centre of the many-body spectrum, with the critical point J;” =0.061£0.002. Each data point represents the average over N;=2,000, 200,100 and 60
disorder realizations for N¢=14,16,18 and 20, respectivelv. A large (exponential) increase in the number of states implies that larger samples require
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Phase diagram (for J*?=0, T=0)
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Figure 3 | Phase diagram and finite-size effects. Phase diagram for the
model (1) with =0 as a function of the interaction constant g. The full
lines show the predictions of the analytical study of the model (1) for the
critical temperature (right vertical axis) and the threshold energy, €, (left
axis) of spin-flip excitations in infinite random graphs with 7 =3 neighbours.
The vertical ovals show the values of the critical coupling constant that
correspond to a transition between different types of spectra for different
energies £ in finite random graphs of small size (N=16-20) as determined
by direct numerical simulations. The uppermost oval shows the transition
at the many-body band centre (corresponding to £31) that sets a lower
bound for the critical g(E). The thick dashed line shows the position of the
spectral threshold for single-spin excitations with energy £ adjusted by
finite-size effects, as explained in the main text and in the Methods section.
The small circles show the typical energy of the single-spin excitations, &(E),
that gives the main contribution to the many body excitations studied in
direct numerical simulations. The good agreement between their position
and expectations (dashed line) confirms the validity of the cavity method>®
that is used to obtain the results in infinite systems. The very small change
in the critical value of the coupling constant between excitations at energy
E=2.0 and the centre of the many-body band implies that all excitations, at
high and low energies, become localized when g<g*.

The Question: delocalization transition at intensive energies ?

Qualitative reason for that: sharp growth of the total DoS with excitation energy



Bethe lattice recursions for noise power:
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Bethe lattice recursions for noise power:
many-body effects

Additional resonance terms due to 3-spin entanglemeng,,
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3-spin entanglement and new resonances

example of & > 0, both &, &k
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Bethe lattice recursions for noise power:
many-body effects
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Recursions produce stationary distribution functional

P{D( )} for random functions D(w)  which describes

correlations between D(w) and D(w') for w ~ W'

Single-particle problem: random numbers 1 ; and distribution function P (I")
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Simplified recursions and low-energy decoherence line:
“proof of the principle”

<
Do(w) = J? Y~ wi(w)D;(w) Neglect energy shifts and
i=1 look for the instability line
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“Directed polymer” approx
“Anderson upper limit”
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Decoherence line
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Actual critical energy w'c(g) > wc (g)

But it is of the same order of magnitude:
consider recursions at w >> wc (g)

and proof their divergence



Major approximations employed

1. Neglect of the non-locality in the energy
during the recursions

2. Forward path approximation
( similar to “upper limit” from AAT) - 2b<1

Conclusions

1. In a quantum disordered spin model decoherence
at intensive energies occurs near the quantum critical
point leading to the ground state with LRO

2. Therefore any T>0 leads to non-vanishing transport

3. Quantitative description of the decoherence line
demands solution of the functional recursion relations
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