

Nonequilibrium noise and current fluctuations at the superconducting phase transition

(Landau Institute, December 22, 2014)

Alex Levchenko

In collaboration with Dmitry Bagrets (Cologne)

Reference: PRB 90, 180505(R) (2014)

N/I/S/I/N Junction

$$\ln\left(\frac{T_c}{T_c^0}\right) = \psi\left(\frac{1}{2}\right) - \psi\left(\frac{1}{2} + \frac{\gamma}{4\pi}\right), \quad \gamma = \left(\varepsilon_{Th} + \tau_H^{-1}\right) / T_c$$

Transition temperature

M. Reznikov (private communication)

100x100x8 nm, 7 Ohm/□ $\xi(0) \approx 100 nm$

Full Current Statistics

$$P_t(N) = \int Z(\chi) \exp(i\chi N) \frac{d\chi}{2\pi}$$

Tails of the distribution P(N) contain the information about rare events

Keldysh Method for Z(x)

Effective Hamiltonian

$$\hat{H}_{\chi} = \hat{H} + \frac{1}{2}\chi\hat{I}$$

Quantum phase

Cumulant Generating Function ("N.E. Free Energy")

$$Z(\chi) = \exp\{-S(\chi)\} = \left\langle e^{i\hat{H}_{\chi}t} e^{-i\hat{H}_{\chi}t} \right\rangle$$

Higher order currents cumulants

Give the information on n-particle correlations !

$$\left\langle \left\langle I^{n}\right\rangle \right\rangle \propto -i^{n}\frac{\partial^{n}}{\partial\chi^{n}}S(\chi)$$

Levitov-Lesovik Formula

B. Reulet, J. Senzier, D. Prober '03

Yu. Bomze, G.Gershon, D.Shovkun, L.S.Levitov, M. Reznikov' 05

Gambling with Electrons

$$Z(\chi) = e^{-S(\chi)} = \prod_{n} [(1 - T_{n}) + (T_{n}e^{i\chi})]^{N_{at}}$$
$$Z_{n}(\chi) = [(1 - T_{n}) + (T_{n}e^{i\chi})]^{N_{at}} = \sum_{N=0}^{N_{at}} \binom{N_{at}}{N} T_{n}^{N} (1 - T_{n})^{N_{at} - N} e^{i\chi N}$$
$$P_{t}(N)$$

Probability distribution *P(N)* is binominal like in the theory of gambling

What About Disorder and Interacting Electrons?

Density of Transmission Eigenvalues

In practice we want disorder averaging to be done at the first step!

Nonlinear Sigma Model – $Q_{tt'}(r)$

$$iS[Q] = -\frac{\pi\nu}{4} \operatorname{Tr}[D(\partial_r Q)^2 - 4\partial_t Q]$$

 $\partial_r Q = \nabla_r Q - i[A_{\chi}, Q]$

 $Q^{2} = 1$

$$Z[\chi] = \int D[Q] \exp(iS[Q, A_{\chi}])$$

FCS in a Diffusive Wire

Gauge transformation

 $Q \to e^{ixA_{\chi}}Qe^{-ixA_{\chi}}$

Saddle point approximation – Usadel equation

$$D\frac{\partial}{\partial x}\left(Q\frac{\partial Q}{\partial x}\right) = 0$$

FCS Action

$$S(\chi) = N_0 \ln^2 [p_{\chi} + \sqrt{p_{\chi}^2 - 1}] \quad p_{\chi} = 2e^{i\chi} - 1$$

Fluctuations → Ginzburg-Landau Functional

Assumes equilibrium (good for linear response calculations)

$$F/T_{c} = \xi_{0}^{-D}T_{c}\int d\tau d^{D}r \left\{ \tau_{GL}\psi^{*}\partial_{\tau}\psi + \frac{1}{2}\xi_{0}^{2}|\nabla\psi|^{2} + a|\psi|^{2} + b|\psi|^{4} \right\}$$

$$\xi_{\rm 0}$$
 - zero T coherence length

$$a = \Delta T/T_c \ll 1, \quad b = \left(\frac{\delta_{\xi}}{T_c}\right) \frac{7\xi(3)}{8\pi^2}$$

$$\delta_{\xi} = \frac{1}{v_D \xi_0^D}$$
 - level spacing in volume ξ_0^D $\tau_{GL} = \frac{\pi}{8T_c}$ - GL time

 Condensate correlation function

$$\left\langle \psi_{q,\omega}^{*}\psi_{q,\omega}\right\rangle \propto \frac{1}{i\omega\tau_{GL}+\xi_{_{0}}^{2}q^{2}+a}$$

• Ginzburg criterium

1

If
$$\frac{\Delta T}{T_c} >> \left(\frac{\delta_{\xi}}{T_c}\right)^{1/2}$$

, then fluctuations are Gaussian

Quantum Keldysh Action...

O-D Keldysh S -model

 $S = -\frac{1}{16} \sum_{k=L,R} g_k \operatorname{Tr}\{Q_{\chi}^{[k]}, Q\} + i\pi\delta^{-1} \operatorname{Tr}\{(i\partial_t + \Delta)Q\} + S_{\Delta} + S_{H}$

• Cooper pairs $S_{\Delta} = -\frac{2i\delta^{-1}}{\lambda} \operatorname{Tr}\Delta^{+}\hat{\sigma}_{x}\Delta$ Keldysh path

• Electrons

$$Q(t_1,t_2) \propto \left\langle T_C \psi(t_1) \psi^+(t_2) \right\rangle$$

Normalization

 $O^2 = 1$

Τ

• In-plane m.field

$$\boldsymbol{S}_{\boldsymbol{H}} = -\frac{\pi\delta^{-1}}{8\tau_{\boldsymbol{H}}} \operatorname{Tr}\left(\tau_{z}\boldsymbol{Q}\right)^{2}$$

Twisted boundary conditions

$$\boldsymbol{Q}_L = \mathrm{e}^{i\,\chi\overline{\tau}_3/2}\,\hat{\boldsymbol{G}}_L^{(0)}\mathrm{e}^{-i\,\chi\overline{\tau}_3/2}$$

Strategy

- Find saddle point of the action 0D Usadel equation
- Account for fluctuation around the saddle point
- Parameterize Q-matrix manifold with Cooperon modes
- Integrate out fluctuations at Gaussian level
- Regularize resulting Det[...]

$$Q_{0} = \frac{1}{\sqrt{N_{\chi}}} (\alpha_{1}Q_{1}^{[\chi]} + \alpha_{2}Q_{2}^{[\chi]})$$
$$N_{\chi} = \frac{1}{(g_{1} + g_{2})^{2}} (g_{1}^{2} + g_{2}^{2} + g_{1}g_{2}\{Q_{1}^{[\chi]}, Q_{2}^{[\chi]}\})$$

....Nonequilibrium TDGL Action

Cumulant Generating Function

Junction is "weakly" driven out of equilibrium, $\Delta T < eV < T_c$

$$\Delta S_{\chi} = t_0 T_c \varepsilon_{\chi} \sqrt{1 - \left(\chi^2 - i\chi \frac{eV}{T_c}\right) \left(\frac{\varepsilon_{Th}}{T_c} \frac{f(\chi)}{\varepsilon^2} + \frac{g(\gamma)}{\varepsilon}\right)}$$

$$\varepsilon = \frac{8}{\pi} \frac{\Delta T}{T_c} + \frac{14\zeta(3)}{\pi^3} \left(\frac{eV}{T_c}\right)^2 <<1$$

FCS of the long avalanches of charges !

We get bunching of electrons due to timedependent fluctuations of the order parameter

... the fluctuations are most strong provided

Differential Conductance

Nonequilibrium Noise

Higher Cumulants of Currents

Current fluctuations are parametrically enhanced close to superconducting transition !

$$\left\langle I(\boldsymbol{\omega}_{1})...I(\boldsymbol{\omega}_{n})\right\rangle \Big|_{\boldsymbol{\omega}_{k}\to 0} \approx e^{n-2}G_{Q}T_{c}\left(\frac{\boldsymbol{\varepsilon}_{Th}}{\Delta T}\right)^{n}\left(\frac{T_{c}}{\Delta T}\right)^{n/2-1}$$

Low frequency dispersion is set by

 $\Delta T \sim 10$ mK gives $\omega_0/2\pi \sim 200$ GHz

$$\omega_0 \approx \max\left\{\Delta T, \frac{eV^2}{T_c}\right\}$$

Estimates for the second moment

$$\left(\frac{\Delta S_I}{GT_{c0}}\right)_{max} = \frac{1}{25g} \left(\frac{\varepsilon_{Th}}{\Delta T}\right)^2$$

Wire dimensions: L=0.5µm, w=100nm, d=10nm

Wire parameters: $D=10^2$ cm²s⁻¹, $v_F=2\times10^8$ cm/s, $\rho=2\mu\Omega$ cm

Energy scales: $\epsilon_{Th} = D/L^2 = 0.3$ K, $\delta = 0.75$ mK, $\Gamma = 0.25T_{c0}$

Probability Distribution Function

Long exponential tail in the distribution of current fluctuations

$$P(I) \propto \exp(-\lambda I t_0/e)$$