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• Introduction. Graphene as  elastic membrane, flexural phonons,  

  ripples. 
 
• Formation of flat phase   at low temperatures.  Mean field  

  approximation.     

 

• Beyond mean field.  Softening of membrane due to   thermal   

  fluctuations  and disorder.  

 

•  Renormalization of bending rigidity. 1/d – expansion (d  is     

   dimension of  space into which   membrane is embedded).    

  
•  Crumpling   transition in membrane. Scaling of bending rigidity.  
 
 
• Effect of disorder on crumpling transition.   Increase  of critical  

   bending rigidity. Non-monotonous scaling   of   bending  

   rigidity. Disorder-induced correlation   functions  
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First isolated and explored: Manchester (Geim, Novoselov, et al., 2004) 
Nobel Prize 2010 (Andre Geim & Konstantin Novoselov) 

Graphene: monoatomic layer of carbon 



4 

Graphene samples 
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Static ripples:  frozen disorder ??? 



Elastic energy 

Strain tensor 

Graphene as elastic membrane  

  in-plane and out-of-plane distortions 

mass density of graphene 

 elastic constants 

bending rigidity 
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                 Flexural phonons (FP) 

out-of-plane  

flexural mode 

soft dispersion of FP 
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Quasistatic approximation 

, 



!!! Proportional to  

the system  size 
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correlation function of FP 

Due  to soft dispersion, thermal  fluctuations with small q are huge    
 

For graphene at room temperature:  



Crumpling transition of membrane:   key parameter     

 
   Crumpled phase,  Flat phase,  
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Scaling of bending rigidity  

crumpling phase transition 

0 



Formation of flat phase  at low temperatures   

For physical membranes d=3, D=2 

flat phase  

crumpled phase  

Paczuski,  Kardar, Nelson , PRL,1988  

Mean field  
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 Flat phase    (T<Tc , x >0) 

in-plane and out-of- 
plane fluctuations 

, 

Elastic constants turn to zero in the transition point   
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Strain tensor 

Renormalization of elastic constants  

It is convenient to redefine:  

David, Guitter, Europhys. Lett. (1988), Radzihovsky, Le Doussal, J.Phys. (Paris) (1991)    
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 Hubbard – Stratonovich   

 transformation 
decouples  (r)4  terms 

First, we look for homogeneous solution for c :    
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Effect of disorder  

random  vector with 

the statistical weight:  

disorder-induced  

contribution   
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Saddle-point equations 

both terms logarithmically 

diverge for D=2     
In the  flat phase: 

x 0,   for  certain value of  L                       

Within this approximation flat phase is  

destroyed  both by thermal fluctuations  

and by disorder  

thermal  

fluctuations 
disorder 

To obtain crumpling transition one should take 

 into account higher order corrections in 1/d   
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Renormalization of bending rigidity  

for B=0  

Interaction between in-plane  

and out-of-plane modes is neglected  

However, such interaction  dramatically change the   

small q behavior of G(q)  due to strong anharmonicity      

Anomalous scaling of bending rigidity 

David, Guitter, Europhys. Lett. (1988),  

Le Doussal, Radzihovsky, PRL (1992) 
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Integrate out the  in-plane modes  (D=2) 

Interaction between  

out-of-plane modes 
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Self-Consistent Screening Approximation  

Self-energy 

Polarization 

operator 
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Weak “anticrumpling” regime:          

ultraviolet cutoff  

Anharmonicity-induced   

increase of  the bending 

rigidity    

0 
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Crumpling transition for  d    

unstable  

fixed point 

 rescaled bending rigidity 

For                        , membrane  

remains in the flat phase in  

the course of renormalization        

agrees  with David, Guitter,  

Europhys. Lett. (1988),  
  

 

 

 

 



Renormalization of  disorder  

add disorder, replicate and average over disorder 

matrix in the  

replica space  
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RG equations 

Rescaled parameters 
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Results: 

 
     Critical bending rigidity  

     becomes disorder dependent  

 

Non-monotonous scaling   

of bending rigidity   
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 Rescaled disorder strength increases exponentially and then saturates 

ripple size??? 

similar result for D=4:  
Morse, Lubensky, Grest, 
PRA 1992 

Disorder  generates new correlation functions  

Conventional correlation  

function    

characteristic scale:  

Disorder-induced   

correlation function    

flat phase 

~ 
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Self consistent screening approximation (SCSA)  

 (similar to SCBA in the theory of disordered systems)                                 

  P. Le Doussal, L. Radzihovsky, PRL (1992) 

 h  is critical  

  exponent  

SCSA (D=3):    h  0.82 

  numerical  simulations:  h  0.7-0.8 

S(q) is  self-energy which should be found  

self-consistently with the Green function   



Physics behind: anharmonic  

coupling with in-plane modes 

Renormalization of bending rigidity 
 

In the Dirac point:  

For  all realistic temperatures   

anharmonic coupling is important !!!  

Z 3.5, K. V. Zakharchenko et al, PRB  (2010) 
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P. Le Doussal,  
L. Radzihovsky,  
PRL (1992) 



    For graphene k/T  30   even for T=300 K        flat phase   

Bending rigidity increases with increasing the  

system size (or decreasing the wave vector ) :  

 

P. Le Doussal and 
 L. Radzihovsky, PRL (1992) 

k    Lh ,   q-h  h    - critical exponent 

in the thermodynamic limit  

fluctuations are suppressed  
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w q2-h/2 dispersion is modified 


