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• Introduction. Graphene as  elastic membrane, flexural phonons,  

  ripples. 
 
• Formation of flat phase   at low temperatures.  Mean field  

  approximation.     

 

• Beyond mean field.  Softening of membrane due to   thermal   

  fluctuations  and disorder.  

 

•  Renormalization of bending rigidity. 1/d – expansion (d  is     

   dimension of  space into which   membrane is embedded).    

  
•  Crumpling   transition in membrane. Scaling of bending rigidity.  
 
 
• Effect of disorder on crumpling transition.   Increase  of critical  

   bending rigidity. Non-monotonous scaling   of   bending  

   rigidity. Disorder-induced correlation   functions  
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First isolated and explored: Manchester (Geim, Novoselov, et al., 2004) 
Nobel Prize 2010 (Andre Geim & Konstantin Novoselov) 

Graphene: monoatomic layer of carbon 
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Graphene samples 
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Static ripples:  frozen disorder ??? 



Elastic energy 

Strain tensor 

Graphene as elastic membrane  

  in-plane and out-of-plane distortions 

mass density of graphene 

 elastic constants 

bending rigidity 
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                 Flexural phonons (FP) 

out-of-plane  

flexural mode 

soft dispersion of FP 
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Quasistatic approximation 

, 



!!! Proportional to  

the system  size 
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correlation function of FP 

Due  to soft dispersion, thermal  fluctuations with small q are huge    
 

For graphene at room temperature:  



Crumpling transition of membrane:   key parameter     

 
   Crumpled phase,  Flat phase,  
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Scaling of bending rigidity  

crumpling phase transition 

0 



Formation of flat phase  at low temperatures   

For physical membranes d=3, D=2 

flat phase  

crumpled phase  

Paczuski,  Kardar, Nelson , PRL,1988  

Mean field  
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 Flat phase    (T<Tc , x >0) 

in-plane and out-of- 
plane fluctuations 

, 

Elastic constants turn to zero in the transition point   
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Strain tensor 

Renormalization of elastic constants  

It is convenient to redefine:  

David, Guitter, Europhys. Lett. (1988), Radzihovsky, Le Doussal, J.Phys. (Paris) (1991)    
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 Hubbard – Stratonovich   

 transformation 
decouples  (r)4  terms 

First, we look for homogeneous solution for c :    
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Effect of disorder  

random  vector with 

the statistical weight:  

disorder-induced  

contribution   
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Saddle-point equations 

both terms logarithmically 

diverge for D=2     
In the  flat phase: 

x 0,   for  certain value of  L                       

Within this approximation flat phase is  

destroyed  both by thermal fluctuations  

and by disorder  

thermal  

fluctuations 
disorder 

To obtain crumpling transition one should take 

 into account higher order corrections in 1/d   
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Renormalization of bending rigidity  

for B=0  

Interaction between in-plane  

and out-of-plane modes is neglected  

However, such interaction  dramatically change the   

small q behavior of G(q)  due to strong anharmonicity      

Anomalous scaling of bending rigidity 

David, Guitter, Europhys. Lett. (1988),  

Le Doussal, Radzihovsky, PRL (1992) 
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Integrate out the  in-plane modes  (D=2) 

Interaction between  

out-of-plane modes 
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Self-Consistent Screening Approximation  

Self-energy 

Polarization 

operator 
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Weak “anticrumpling” regime:          

ultraviolet cutoff  

Anharmonicity-induced   

increase of  the bending 

rigidity    

0 
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Crumpling transition for  d    

unstable  

fixed point 

 rescaled bending rigidity 

For                        , membrane  

remains in the flat phase in  

the course of renormalization        

agrees  with David, Guitter,  

Europhys. Lett. (1988),  
  

 

 

 

 



Renormalization of  disorder  

add disorder, replicate and average over disorder 

matrix in the  

replica space  
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RG equations 

Rescaled parameters 
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Results: 

 
     Critical bending rigidity  

     becomes disorder dependent  

 

Non-monotonous scaling   

of bending rigidity   
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 Rescaled disorder strength increases exponentially and then saturates 

ripple size??? 

similar result for D=4:  
Morse, Lubensky, Grest, 
PRA 1992 

Disorder  generates new correlation functions  

Conventional correlation  

function    

characteristic scale:  

Disorder-induced   

correlation function    

flat phase 

~ 
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Self consistent screening approximation (SCSA)  

 (similar to SCBA in the theory of disordered systems)                                 

  P. Le Doussal, L. Radzihovsky, PRL (1992) 

 h  is critical  

  exponent  

SCSA (D=3):    h  0.82 

  numerical  simulations:  h  0.7-0.8 

S(q) is  self-energy which should be found  

self-consistently with the Green function   



Physics behind: anharmonic  

coupling with in-plane modes 

Renormalization of bending rigidity 
 

In the Dirac point:  

For  all realistic temperatures   

anharmonic coupling is important !!!  

Z 3.5, K. V. Zakharchenko et al, PRB  (2010) 
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P. Le Doussal,  
L. Radzihovsky,  
PRL (1992) 



    For graphene k/T  30   even for T=300 K        flat phase   

Bending rigidity increases with increasing the  

system size (or decreasing the wave vector ) :  

 

P. Le Doussal and 
 L. Radzihovsky, PRL (1992) 

k    Lh ,   q-h  h    - critical exponent 

in the thermodynamic limit  

fluctuations are suppressed  

12 

w q2-h/2 dispersion is modified 


