

Conductivity of a generic helical liquid

Nikolaos Kainaris, Igor Gornyi, Sam Carr, and Alexander Mirlin | December 25, 2014

NK: KIT; IG: KIT + IOFFE PTI + LANDAU ITP; SC: KENT; AM: KIT + PNPI + LANDAU ITP

www.kit.edu

- Topological insulators and QSHE
- 1D physics and disordered Luttinger liquid
- Generic helical liquid
- Conductivity of a helical liquid

What is a topological insulator?

Topological insulator \equiv bulk insulator with metallic edge/surface

Examples

- Quantum Hall effect at the plateau
- Materials with extreme spin-orbit coupling (inverted gap)
 - 2D: Quantum spin-Hall effect (HgTe/CdHgTe quantum wells)
 - 3D: Bi_xSb_{1-x}, BiTe, BiSe

Topological invariants

Topological invariants

- QHE: time-reversal symmetry broken by magnetic field Chern number = # of edge states = ... - 2, -1, 0, 1, 2, ... (ℤ) ⇒ ℤ topological insulator
- QSHE: time-reversal symmetry preserved, spin-rotational broken band structure topological invariant (ℤ₂): n = 0 or n = 1
 ⇔ odd vs. even number of Kramers pairs of edge states
 ⇒ ℤ₂ topological insulator

Quantum spin-Hall effect

Kane, Mele '05, Sheng et al '05 Bernevig, Zhang '06

No magnetic field but strong spin-orbit interaction ⇒ Electrons with opposite spins feel opposite effective magnetic field

Electric current leads to spin accumulation at the edges \implies spin-Hall effect Extreme spin-orbit coupling opens a band gap → quantum spin-Hall effect?

QSHE: Cartoon

- two QH states with opposite magnetic field
 - \rightarrow effective magnetic field due to spin-orbit coupling

- Z_2 TI: one time reversal pair \rightarrow helical edge state
- Naively: quantized conductance $G_0 = 2e^2/h$

Quantum (spin-)Hall effect with disorder

QSHE: theory proposal

Bernevig, Hughes, Zhang '06

2D Dirac Hamiltonian with tunable mass: $m \ge 0$ when $d \le d_c$

HgTe quantum wells: Hamiltonian

 J_z -symmetric Hamiltonian in basis E1+, H1+, E1-, H1-(Bernevig-Hughes-Zhang Hamiltonian):

$$\begin{aligned} H_{\text{BHZ}} &= \begin{pmatrix} h(\mathbf{k}) & 0\\ 0 & h^*(-\mathbf{k}) \end{pmatrix}, \quad h(\mathbf{k}) = \begin{pmatrix} \epsilon(\mathbf{k}) + m(\mathbf{k}) & Ak_+\\ Ak_- & \epsilon(\mathbf{k}) - m(\mathbf{k}) \end{pmatrix}\\ k_{\pm} &= k_x \pm ik_y, \quad \epsilon(\mathbf{k}) = C + D\mathbf{k}^2, \quad m(\mathbf{k}) = M + B\mathbf{k}^2. \end{aligned}$$

Spin-orbit interaction (block mixing) due to BIA and SIA:

$$H_{\rm SO} = \begin{pmatrix} 0 & 0 & 2\delta_e k_+ & -\Delta_0 \\ 0 & 0 & \Delta_0 & 2\delta_h k_- \\ 2\delta_e k_- & \Delta_0 & 0 & 0 \\ -\Delta_0 & 2\delta_h k_+ & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 2ir_0 k_- & 0 \\ 0 & 0 & 0 & 0 \\ -2ir_0 k_+ & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

QSHE: experiment

Molenkamp group '07

I — d = 5.5nm: normal insulator II, III, IV — d = 7.3nm: inverted band gap — topological insulator

QSHE: Phase diagram

Interaction restores direct quantum spin-Hall transition via a novel critical state

Ostrovsky, IG, Mirlin, PRL'10

Physics in one dimension

- Many body problem, Fermi sea, Fermi surface
- 1D : Fermi surface consists of two points particles are moving to the right (R) or to the left (L)

current

$$J = e \, v_F \left(N_R - N_L \right)$$

Physics in 1D: strong correlations

- Electrons in 1D have no way "around" each other
- Arbitrarily weak interaction qualitatively changes the ground state
- Fundamental excitations: collective density waves plasmons

Tomonaga-Luttinger liquid

Interacting model (quartic in fermions):

$$\begin{aligned} \hat{\mathcal{H}}_{0} &= -i v_{F} \int \mathrm{d}x \, \sum_{\eta = R, L} \eta \hat{\psi}_{\eta}^{\dagger}(x) \partial_{x} \hat{\psi}_{\eta}(x) \\ \hat{\mathcal{H}}_{\text{int}} &= g \int \mathrm{d}x \, \hat{\rho}(x) \hat{\rho}(x), \quad \rho(x) = \sum_{\eta} \hat{\psi}_{\eta}^{\dagger}(x) \hat{\psi}_{\eta}(x) \end{aligned}$$

Bosonization : Exact mapping of fermionic to bosonic Hilbert space

$$\hat{\psi}_{\eta}(\mathbf{x}) = (2\pi\alpha)^{-1/2} \exp\left(-i\sqrt{\pi}\left[\hat{\varphi} - \eta\hat{\theta}\right]\right)$$

Nonlocal commutation relations: $[\hat{\varphi}(x), \hat{\theta}(y)] = i\Theta(x - y)$

Operator Bosonization

Interacting model remains quadratic in bosons

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{int} = \frac{u}{2} \left[K (\partial_x \hat{\theta})^2 + K^{-1} (\partial_x \hat{\varphi})^2 \right]$$

characterized by two parameters

Luttinger liquid parameter	Plasmon velocity
$\mathcal{K}=(1+g/\pi v_F)^{-1/2}$	$u = v_F/K$

• Luttinger liquid parameter describes fermionic interaction strength: K = 1 noninteracting, K < 1 repulsive, K > 1 attractive

Different 1D quantum liquids

1D quantum liquids

- Luttinger liquids with these structures of modes?
- Conductivity?

Disordered Luttinger liquid

Giamarchi & Schulz '88; IG, Mirlin, Polyakov '05, '07

- Single-channel infinite wire: right(left) movers ψ_{η} , $\eta = \pm$
- Spinless (spin-polarized, $\sigma = +$) or spinful ($\sigma = \pm$) electrons
- Linear dispersion, $\epsilon_k = k v_F$
- Short-range weak e-e interaction,

$$\alpha \equiv V(0)/2\pi v_F \ll 1$$

- No e-e backscattering; g-ology with g₂ and g₄
- White-noise weak ($E_F \tau_0 \gg 1$) disorder,

$$\langle U(x)U(x')\rangle = \delta(x-x')/2\pi\nu_0\tau_0.$$

Bosonization and disorder averaging

Giamarchi & Schulz '88

- Bosonization: given realization of disorder,
- Disorder averaging. Quenched disorder: replicas ϕ_n

Bosonized replicated action (no spin):

$$S[\phi] = \frac{1}{2\pi v_F} \sum_{n} \int dx \, d\tau \, \left\{ \left[\partial_{\tau} \phi_n(x,\tau) \right]^2 - u^2 \left[\partial_x \phi_n(x,\tau) \right]^2 \right\} \\ - \frac{v_F k_F^2}{\pi^2 \tau_0} \sum_{n,m} \int dx \, d\tau \, d\tau' \, \cos[2\phi_n(x,\tau) - 2\phi_m(x,\tau')]$$

Two steps: virtual & real processes

IG, Mirlin, Polyakov '05, '07; Bagrets, IG, Mirlin, Polyakov '09

• Step 1: Integrate out $T < \epsilon < E_F$ (RG, virtual processes) Giamarchi & Schulz '88 $\rightarrow T$ -dependent static disorder

$$\tau(T) = \tau_0 (T/E_F)^{2\alpha},$$

all power-law (Luttinger) terms $\propto (E_F/T)^{\gamma}$ in renormalized couplings

Step 2: Refermionize

solve kinetic equation: classical (Drude) conductivity

$$\sigma_D(T) \propto \tau(T) \propto T^{2\alpha},$$

inelastic relaxation processes; interference and dephasing

1D vs. 2D

- Luttinger ("non-Fermi") liquid \leftrightarrow Zero-bias anomaly in TDOS
- $\nu(\epsilon)/\nu_0 \sim (\epsilon/E_F)^{\gamma} \ll 1$ $\nu(\epsilon)/\nu_0 \sim \exp[-\frac{1}{8\pi^2 g} \ln^2 \epsilon] \ll 1$
- Renormalization of disorder \leftrightarrow T-dependent screening
- Anderson localization \leftrightarrow Strong WL-corrections $(L_{\omega} \sim \xi)$

Helical liquid

- Linear spectrum with Dirac point
- Elastic backscattering from nonmagnetic impurity forbidden
- Inelastic (two-particle) backscattering allowed

Xu & Moore '06, Wu, Bernevig, Zhang '06

Generic helical liquid

- Linear spectrum with Dirac point
- Elastic backscattering from nonmagnetic impurity forbidden
- Broken S_z symmetry: Inelastic backscattering allowed

Schmidt, Rachel, von Oppen, Glazman '12

Motivation

Goal

Theory of transport in a generic helical liquid.

Previous work

- Correction to conductance of a short edge for weakly interacting electrons^{1,2}
- Luttinger liquid renormalization^{2,3,4,5}

This work

Conductivity of long edge channels including LL renormalization

¹ T. L. Schmidt, S. Rachel, F. von Oppen and L. I. Glazman, Phys. Rev. Lett. 108, 156402 (2012).

² F. Crépin, J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel, Phys. Rev. B 86, 121106(R) (2012).

³ A. Ström, H. Johannesson, and G. I. Japaridze, Phys. Rev. Lett. **104**, 256804 (2010).

⁴ N. Lezmy, Y. Oreg, and M. Berkooz, Phys. Rev. B 85, 235304 (2012).

⁵ F. Geissler, F. Crépin, and B. Trauzettel, Phys. Rev. B 89, 235136 (2014)

Model

Generic helical liquid

with SO interaction – block mixing = S_z broken, TR respected. Rotation of basis (spins vs. chirality/helicity) ¹

$$\begin{pmatrix} \psi_{k,\uparrow} \\ \psi_{k,\downarrow} \end{pmatrix} = B_k \begin{pmatrix} \psi_{k,R} \\ \psi_{k,L} \end{pmatrix}, \qquad B_k^{\dagger} B_k = \mathbb{1}, \qquad B_k = B_{-k}$$

General form of B_k for $k \ll k_0$ (here k_0^{-1} – strength of SO interaction):

$$B_{k} = \begin{pmatrix} 1 - \frac{k^{4}}{2k_{0}^{4}} & -\frac{k^{2}}{k_{0}^{2}} \\ \frac{k^{2}}{k_{0}^{2}} & 1 - \frac{k^{4}}{2k_{0}^{4}} \end{pmatrix}, \qquad \left[B_{k}^{\dagger} B_{\rho} \right]_{\eta,\eta'} = \delta_{\eta,\eta'} + \eta \, \delta_{\bar{\eta},\eta'} \frac{k^{2} - \rho^{2}}{k_{0}^{2}},$$

¹Schmidt, Rachel, von Oppen, Glazman (PRL 2012)

Model

Microscopic model for 1D time reversal invariant quantum liquid²

Spinless Fermions with momentum k and chirality η :

$$\hat{\mathcal{H}}_{0} = \textit{v}_{\textit{F}} \sum_{\textit{k},\eta} \eta \, \textit{k} \; \hat{\psi}_{\eta,\textit{k}}^{\dagger} \hat{\psi}_{\eta,\textit{k}}$$

Linear spectrum

²Schmidt, Rachel, von Oppen, Glazman (PRL 2012)

Karbruhe Institute of Technology

Model

screened two-particle interaction

$$\begin{split} \hat{\mathcal{H}}_{2} &= \frac{V}{L} \sum_{k,p,q,\eta} \hat{\psi}_{\eta,k}^{\dagger} \hat{\psi}_{\bar{\eta},p}^{\dagger} \hat{\psi}_{\bar{\eta},p+q} \hat{\psi}_{\eta,k-q} \\ \hat{\mathcal{H}}_{3} &= \frac{V}{k_{0}^{4} L} \sum_{k,p,q,\eta} \left(k^{2} - (k-q)^{2} \right) \left(p^{2} - (p+q)^{2} \right) \hat{\psi}_{\eta,k}^{\dagger} \hat{\psi}_{\eta,p}^{\dagger} \hat{\psi}_{\bar{\eta},p+q} \hat{\psi}_{\bar{\eta},k-q} \\ \hat{\mathcal{H}}_{5} &= -\frac{V}{k_{0}^{2} L} \sum_{k,p,q,\eta} \eta (k^{2} - p^{2}) \hat{\psi}_{\eta,k+q}^{\dagger} \hat{\psi}_{\bar{\eta},p-q}^{\dagger} \hat{\psi}_{\eta,p} \hat{\psi}_{\eta,k} + h.c. \end{split}$$

Model: disorder

Short range, non-magnetic impurities

Magnetic impurities & conducting islands (Kondo, spin glass...):

J. Maciejko, C. Liu, Y. Oreg, X.-L. Qi, C. Wu, and S.-C. Zhang '09

V. Cheianov, L. Glazman '13; J.I. Väyrynen, M. Goldstein, L.I. Glazman '13; J.I. Väyrynen, M. Goldstein, Y. Gefen, L.I. Glazman '14

B.L. Altshuler, I.L. Aleiner, V.I. Yudson '13

Not included here; might be important for experiments

Model

Microscopic model for 1D TR invariant quantum liquid

momentum factor ensures TRI
 k₀⁻¹ measures spin-orbit

coupling

Methods

1. $\ell_{\phi} \ll \ell$: Semiclassical conductivity

Kinetic equation

- Weakly interacting electrons $K \simeq 1$
- Classical electric field $\omega \ll T$
- *ac* ($\omega \gg \tau^{-1}$) and *dc* ($\omega \ll \tau^{-1}$) conductivity

Bosonization + Kubo formula

- Arbitrary interactions $K \in (0, 1]$
- Classical electric field $\omega \ll T$ and "photons" $\omega \gg T$
- ac conductivity
- 2. ℓ_φ ≫ ℓ: Quantum interference effects
 mapping³ to Giamarchi-Schulz model

³Ström, Johanneson, Japaridze (2010)

Methods

1. $\ell_{\phi} \ll \ell$: Semiclassical conductivity

Kinetic equation

- Weakly interacting electrons $K \simeq 1$
- Classical electric field $\omega \ll T$
- *ac* ($\omega \gg \tau^{-1}$) and *dc* ($\omega \ll \tau^{-1}$) conductivity

Bosonization + Kubo formula

- Arbitrary interactions $K \in (0, 1]$
- Classical electric field $\omega \ll T$ and "photons" $\omega \gg T$
- ac conductivity

2. $\ell_\phi \gg \ell$: Quantum interference effects

mapping³ to Giamarchi-Schulz model

³Ström, Johanneson, Japaridze (2010)

Methods

1. $\ell_{\phi} \ll \ell$: Semiclassical conductivity

Kinetic equation

- Weakly interacting electrons $K \simeq 1$
- Classical electric field $\omega \ll T$
- *ac* ($\omega \gg \tau^{-1}$) and *dc* ($\omega \ll \tau^{-1}$) conductivity

Bosonization + Kubo formula

- Arbitrary interactions $K \in (0, 1]$
- Classical electric field $\omega \ll T$ and "photons" $\omega \gg T$
- ac conductivity

2. $\ell_\phi \gg \ell$: Quantum interference effects

mapping³ to Giamarchi-Schulz model

³Ström, Johanneson, Japaridze (2010)

 process has to change chirality of incoming particles

 $j = e \, v_F \left(N_R - N_L \right)$

- Disorder backscattering reduced by TRI ⇒ forward scattering dominant in combined processes
- Transport: combined effects of interaction and disorder

 process has to change chirality of incoming particles

 $j = e \, v_F \left(N_R - N_L \right)$

- Disorder backscattering reduced by TRI ⇒ forward scattering dominant in combined processes
- Transport: combined effects of interaction and disorder

 process has to change chirality of incoming particles

 $j = e \, v_F \left(N_R - N_L \right)$

- Disorder backscattering reduced by TRI ⇒ forward scattering dominant in combined processes
- Transport: combined effects of interaction and disorder

 process has to change chirality of incoming particles

 $j = e v_F \left(N_R - N_L \right)$

- Disorder backscattering reduced by TRI ⇒ forward scattering dominant in combined processes
- Transport: combined effects of interaction and disorder

Clean case: ac vs dc conductivity

Scattering time au in presence of g_5 interaction

	$T \ll v_F k_F$	$T \gg v_F k_F$
$ au_{\mathrm{ac}}$	$0.16\left(\frac{v_F}{V}\right)^2 \left(\frac{k_0}{k_F}\right)^4 \frac{T}{(v_F k_F)^2} e^{\frac{v_F k_F}{T}}$	$6.5 \times 10^{-3} \left(\frac{v_F}{V}\right)^2 \frac{1}{v_F k_0} \left(\frac{v_F k_0}{T}\right)^5$
$ au_{dc}$	$0.81\left(\frac{v_{F}}{V}\right)^{2}\left(\frac{k_{0}}{k_{F}}\right)^{4}\frac{1}{v_{F}k_{F}}e^{\frac{v_{F}k_{F}}{T}}$	$0.014 \left(\frac{v_F}{V}\right)^2 \frac{1}{v_F k_0} \left(\frac{v_F k_0}{T}\right)^5$

T ≫ v_Fk_F: τ independent of ω
 ⇒ Interpolation by Drude's law :

$$\sigma(\omega) \simeq rac{2e^2 v_F}{h} rac{1}{ au^{-1} - i\omega}$$

• $T \ll v_F k_F$: Non-Drude

Clean case: Discussion

Scattering time in presence of g_5 interaction at $T \ll k_F$

- Kinetics: one particle at Dirac point
- thermally activated at low temperatures
- parametrical suppresion at ω = 0:

$$\tau_{dc} = \frac{E_F}{T} \tau_{ac} \gg \tau_{ac}$$

Disordered case: Effective action

Bosonization and average over white noise disorder leads to effective action

$$\begin{split} S_{2\mathsf{P}} &= -g_{2\mathsf{P}} \sum_{a,b} \int \mathrm{d}x \mathrm{d}\tau \mathrm{d}\tau' \cos \left\{ 2\sqrt{4\pi} \left[\varphi_a(x,\tau) - \varphi_b(x,\tau') \right] \right\}, \\ S_{1\mathsf{P}} &= -g_{1\mathsf{P},1} \sum_{a,b} \int \mathrm{d}x \mathrm{d}\tau \mathrm{d}\tau' \, \partial_x^2 \theta_a(x,\tau) \partial_x^2 \theta_b(x,\tau') \cos \left\{ \sqrt{4\pi} \left[\varphi_a(x,\tau) - \varphi_b(x,\tau') \right] \right\} \\ &+ g_{1\mathsf{P},2} \sum_{a,b} \int \mathrm{d}x \mathrm{d}\tau \mathrm{d}\tau' \, \partial_x^2 \theta_a(x,\tau) \partial_x \theta_b(x,\tau') \sin \left\{ \sqrt{4\pi} \left[\varphi_a(x,\tau) - \varphi_b(x,\tau') \right] \right\}, \\ S_{\mathsf{R}} &= -g_{\mathsf{R}} \sum_{a,b} \int \mathrm{d}x \mathrm{d}\tau \mathrm{d}\tau' \, \partial_x \theta_a(x,\tau) \partial_x \theta_b(x,\tau') \cos \left\{ \sqrt{4\pi} \left[\varphi_a(x,\tau) - \varphi_b(x,\tau') \right] \right\}. \end{split}$$

with coupling constants

$$g_{1P} \propto D_f g_5^2, \qquad g_{2P} \propto D_f g_3^2, \qquad g_R \propto D_b$$
 (1)

Disordered case

Phase diagram of conductivity:

Transport in the presence of disorder

• Drude's law for conductivity as a function of ω :

$$\sigma = \frac{2e^2u}{h}\frac{1}{\tau^{-1} - i\omega}$$

Results: LL renormalization

crossover between scattering mechanisms at K = 2/3

$$\begin{aligned} \tau_{2\mathsf{P}}^{-1} &\sim \left(\frac{V}{u}\right)^2 \frac{D_f}{u} \left(\frac{k_F}{k_0}\right)^2 \frac{1}{(ak_0)^6} \left(\frac{a\max\left(\omega,T\right)}{u}\right)^{8K-2},\\ \tau_{1\mathsf{P}}^{-1} &\sim \left(\frac{V}{u}\right)^2 \frac{D_f}{u} \frac{1}{(ak_0)^4} \left(\frac{a\max\left(\omega,T\right)}{u}\right)^{2K+2}. \end{aligned}$$

backscattering has no effect to first order in D_b.

Experiment

• HgTe/CdTe: short ($\sim 1 \mu m$) edges

• InAs/GaSb: longer ($\sim 10 \mu m$) edges

Experiment

Gusev, Kvon, et al. '12, '13:

long edges (5-50 μ m), resistance much higher than quantum resistance, temperature dependence saturates

Summary

- Behavior of conductivity:
 - disordered case: Drude-like
 - clean case: Non-Drude at $k_F v_F \gg T$
- Combination of interaction and forward scattering off disorder: temperature or frequency dependent σ
- LL effects cause renormalization of exponents as a function of K

N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin, "Conductivity of a generic helical liquid", Phys. Rev. B. **90**, 075118 (2014)