Superconductor-Insulator and
superconductor-metal transitions
M. V. Feigel'man, L. D. Landau Institute for Theoretical Physics

1. Introduction. 3 scenario for destruction of

superconductivity by disorder
2. Superconductor-metal transitions at T=0
- Suppression of Tc due to increase of Coulomb repulsion
- Enchancement of mesoscopic fluctuations near crit point
- Proximity-coupled array and quantum fluctuations of phases
3. Superconductivity-insulator transitions in homogeneously
disordered materials
- Fractal superconductivity at the mobility edge
- Pseudo-gaped superconductivity
- Quantum phase transition between
pseudo-gaped superconductor and paired insulator
- Signatures of the many-body localization
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Actually, the story is much more complicated



Disordered superconductors
(classical results)

* Potential disorder does not affect superconductive

transition temperature (for s-wave) - A.A.
Abrikosov & L.PGor’kov 1958 PW.Anderson 1959

e In the “dirty limit” [ << &, coherence length
decreases as & ~ (I é,)12 whereas London
length grows as A ~ [ -12

Accuracy limit: semi-classical approx. k. >> 1
or (the same in another form) G = o (h/e?) {92 >> ]

What happens if G~1 ?



“Anderson theorem”
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Approx. A(r)= const leads to BCS gap equation

= g J N(0) (d&/€) th(&/2T)

Accuracy limit: semi-classical approx. k.l >> 1
or (the same in another form) G = o (h/e?) {92 >> ]

What happens it G~1 ?



Superconductivity v/s Localization

Granular syvstems with Coulomb interaction

K.Efetov (1980) M.PA.Fisher et al (1990)
“Bosonic mechanism”

Granular metals or artificial arrays of islands

Coulomb-induced suppression of Tc in uniform films
“Fermionic mechanism”

Yu.Ovchinnikov (1973, wrong sign) Mayekawa-Fukuyama
(1983) A.Finkelstein (1987) Yu.Oreg & A. Finkelstein

(1999) Very strongly disordered amorphous metallic
alloys a-MoGe, a-NbSi, etc

Competition of Cooper pairing and localization (no
lom Imry-Strongin, Ma-Lee, Kotliar-Kapitulnik,
Bulaevskii-Sadovskii(mid-80’s)

Ghosal, Randeria, Trivedi 1998-2001, 2011
Amorphous “poor metals” with low carrier density



Bosonic mechanism
JOSEPHSON ARRAYS

Control parameter
Elementary building block

OO x=EJ,
O
OO

Ideal Hamiltonian: Artificial alrrays:

H = EECH'qugi + E, cos(e, —@; - LT&} g. =2le ii ma‘]or,term 11
23 D, dg, capacitance

C, - capacitance matrix E; - Josephson energy matrix is n-n

capacitance C

E = e?/2C

-, and @ are canonically conjugated

Usual SC state with full gap inside each island,
irrespectively of the macroscopic state



Granular v/s Amorphous films
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FIG. 1. Resistance versus temperature for sequential layers
of quench-condensed granular Pb (left) and uniform Pb evap-
orated on a thin Ge layer (right). Different curves correspond
to different nominal thickness.

A.Frydman
Physica C
391, 189 (2003)



S-I transitions: grains v/s continuous
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Fermionic mechanism:
suppression of T in amorphous thin films

by disorder-enhanced Coulomb interaction

* Theory * Experiment
S. Maekawa and H. Fukuyvama, J. Phys. Soc. Jpn. 51, J. M. Graybeal and M. R. Beasly, Phys. Rev. B 29, 4167
1380 (1982). (1984), J. M. Graybeal, M. R. Beasly, and R. L. Green,
H. Takagi and Y. Kuroda, Solid Stat. Comm. 41, 643 Physica B4+C 126 731 (1984).

(1982).

A. M. Finkel'stein, Pis'ma ZhETF 45, 37 (1987), [JETP
Lett 45, 46 (1987)]; A. M. Finkel'stein in Proc. Int.
Symp. on Anderson Localization, edited by T. Ando
and H. Fukuyama (Springer-Verlag,Berlin, 1988}, p. 230,
Springer Proc. in Physies Vol. 28.

* Review: A, M. Finkel'stein, Physica B 197, 636 (1994).

P. Xiong, A. V. Herzog, and R. C. Dynes, Phys. Rev.
Lett., T8, 927 (1997).

* Generalization to quasi-1D stripes:* Yu. Oreg and A. M. Finkel'stein
* Phys. Rev. Lett. 83, 191 (1999)

* Similar approach for 3D poor P W. Anderson, K. A. Muttalib, and
* Conductor near Anderson transition: ¢ T. V. Ramakrishnan,
* Phys. Rev. B 28, 117 (1983)

Materials: a-MoGe, a-NbSi, etc



Fermionic mechanism: qualitative picture

* Disorder increases Coulomb interaction and thus
decreases the pairing interaction (sum of
Coulomb and phonon attraction). In perturbation

theory: g = 21 ho /e?
AME)=A,— ( \ Return probability in
et D
Rouchly, 9L _ o4
OUgy, — =79 Itis a “revival” of strong Coulomb repulsion,

(o

due to slow diffusion at g ~ 1

Crucial experimental signatures:
1) spectral gap vanishes together with transition temperature T_
2) non-SC state looks more like a metal than an insulator



Coulomb suppression of T,

Critical temperature _ —
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Conclusion:
At In(1/T_1)>5 =) Superconductor — Metal

g >4 ie R < Rq ' Quantum phase transition



Disorder-Induced Inhomogeneities of the Superconducting State Close to the
Superconductor-Insulator Transition

B. Sacépé,' C. Chapelier,! T.I. Baturina,® V.M. Vinokur,” M.R. Baklanov,! and M. Sanquer’
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What is the nature of the state
on the other side of the T=0 transition ?

Experimental answer: it is a metallic state
with a relatively low resistivity
(sometimes much below its “normal-state” value)

Theoretical answer is unknown.



Onset of superconductivity in ultrathin granular metal films

H. M. Jaeger,* D. B. Haviland, B. G. l;II'rr,’r and A. M. Goldman

Data for Pb (M) and Ga (@)

7 R(T—0)=A4exp[=B(Ry/R..~1)'"],
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An attempt to use BKT-like analysis

R(T) = Ryexp[—b/(T — Tgxr)'/?]
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Nb Si. thin films

Olivier Crauste THESE  ['Université Paris- Sud XI  (2010)
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2) Mesoscopic fluctuations of T, near the
Quantum S-M Phase Transition

M. Feigelman and M. Skvortsov, Phys. Rev. Lett. 95 057002 (2005)

Fluctuatirnmear T,

T hermal Due to disorder

AE)=A, -

1)
4%9 (8f7 «
ST.  SA |

T A2
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Ginzburg-Landau expansion: result

FIA] = / [amn_ 1)|A|2-|—7|VA|2+§|A|4] dr

«, B and ~ are the usual GL parameters for dirty superconductors, and

A= Auw(lr) = —= M=y (= In—
pm— T.) — = 3 pm—
cosh A\4Cr 7 /27g ET

Gi is the same
as in the absense
of the Coulomb repulsion:

Gi=
39



Superconductor with fluctuating T,

Superconductor with fluctuating 7. - Sov.Phys.JETP
54, 378 (1981)

F:/{[Q(T/TC— 1)+5a(r)}|A|2+fy\vA|2+§|A|4}dr

C N 7¢(3)
w*(T) or—r) = 84 DT

(ba(r)da(r’)) = cosh?(\,¢r) 6(r — 1)

Linearized GL equation is similar to a Schrodinger eq. with
Gaussian random potential

Localized “tail states” I.Lifshitz, Zittarz & Langer,
Halperin & Lax (mid-60’s)

(formally equivalent to “instanton solutions”
In some effective field theory)



Mesoscopic vs. thermal fluctuations

T — 1T,
1t Concentration of SC islands: P ~ exp |—
Oq T
5 0.4
d pr—
g(g - gc)

Broadening of the transition
due to mesoscopic fluctuations

Thermal fluctuations
03

9

strongly
— inhomogeneous

Gi

g—9gc~1 g —Ggc~ —



Intermediate conclusions

Superconducting correlations are extremely inhomogeneous
at g near critical conductance g.

Due to enchancement of mesoscopic fluctuations, a
random set of SC islands is formed in the sea of
surrounding metal

It does not mean that the system is similar to JJ array since
no grains and insulating barriers are present

How important is this “island structure” for the properties
of quantum metal state that exists at g < g_?

Consider a model system:
regular array of SC islands siting on dirty metal films
and study its QPT



Experiment. Sn islands on graphene

Collapse of superconductivity in a hybrid tin-graphene

Josephson junction array
Nature Physics (published 30 March 2014)

Zheng Han'”, Adrien Allain'*, Hadi Arjmandi-Tash'”, Konstantin Tikhonov’*, Mikhail
Feigel’man’ >, Benjamin Sacépé'” and Vincent Bouchiat'




Resistance / Q

R(T) curves
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 Figure 83: AR/R obtained by subtracting field-effect curve at 3.8 K and 3.3 K. Dirac

point of the sample is ~ -13 V. AR/R at hole side is about half of that at electron side.
We understand this as Sn is a electron donor, and once graphene is tuned into hole
side, the pinning of Fermi level starts to be significant and a p-n junction thus formed

to reduce the interface transparency.
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!L The reason for SC suppression: quantum phase fluctuations
L

Quantum superconductor-metal transition in a proximity array

M. V. Feigel'man', A. I. Larkin"? and M. A. Skvortsov!

Phys. Rev. Lett. 86, 1869 (2001)

1 4 D B 2
— ~ _ T g Gl = = ey RE
. In(Ly/b) T+ 2In(b/d)
T =IOy g ” b2(g)/b2 — 1’ Je =

Neglecting Cooper-
channel interaction
In graphene I ~ £, exp|—

g—&,

Otherwise, like in Finkelstein's theory

T ~(g—g) M2
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FIG. 3. a) Temperature dependance of resistance at different
gate voltages in a temperature range of 70 mK - 500 mK.

b) Individual current-bias dV/dI curves at gate voltages from
-13 V to 0 V, at 60 mK temperature.

Very large conductivity in the low-T limit
But no superconducting state even at lowest T



dVidl (k)

Exponentially strong “paraconductivity” at
lowest temperatures

10 kKOhms —

1 kOhms =

100 Ohms =

10 Ohms —

— B0
65
- 70 mK

-10

-5 0

Gate Voltage (V)

s s

0

At Vg < -8V paraconductivity

can be treated as fluctuational
correction like quantum AL

Near the critical Vg value

paraconductivity is exponentially
large and the picture of
quantum phase slips seems

to be relevant



Ak

- Quantum phase slips in 2D system ??
two options:

1. Actually, the system Is of nearly 1D type (percolation-like
structure with long 1D chains) leading to finite tunneling

action for QPS
2. Genuine guantum version of vortex-driven
BKT transition in 2D (still unknown) does exist

Regarding tin-graphene experiment, the 3¢
option Is possible: the finite-size effect

Finally, we never know If T Is low enough
For this experiment typical energy scale Is

E, = hD/21th? = 0.1 Kelvin



Conclusions for Part 1

k-

1. Coulomb repulsion in the Cooper channel is enhanced by
disorder and leads to suppression of T_ of homogeneously

disordered metal films down to zero at some g_>>1

2 Near critical conductance superconducting state is very
Inhomogeneous while the metal itself shows nothing apart weak
mesoscopic fluctuations

3. Natural model system for SMT is a model of SC islands on a

top of disordered metal film. T=0 quantum phase transition

In a such a model can be described by a competition between
Proximity-induced Josephson coupling and weak Coulomb blockade

4. “Normal” state of the other side of the T=0 SMT is a characterized
by high and nearly T-independent conductance those nature
Is unknown.



Part 2: Direct S-I transition
"and superconductivity in amorphous
' poor conductors:
' fractality, pseudo-gap and new SIT scenario

Theoretical approach:

Competition of Cooper pairing and localization
(no Coulomb repulsion)

Imry-Strongin, Ma-Lee, Kotliar-Kapitulnik,
Bulaevskii-Sadovskii(mid-80’s)

Ghosal, Randeria, Trivedi (1998-2001, 2011) -
numerics
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D.Shahar & Z.Ovadyahu

amorphous InO 1992
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Hl_l(n}

Direct S-1-T - TIN

Example: Disorder-driven
S-1 transition in TIN thin films

T.l.Baturina et al Phys.Rev.Left 99 257003 2007

Specific Features of Direct SIT:

Insulating behaviour of the R(T)
separatrix

On insulating side of SIT, low-

temperature
resistivity is activated: R(T) ~

exp(T,/T)
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The quest for the 3d scenario:
major challenges from the data

In some materials SC survives up to very
high resistivity values. No structural grains are

found there.
Preformed electron pairs are detected in the

same materials both above T_and at very low
temperatures on insulating side of SIT

- by STM study in SC state
- by the measurement of the activated

R(T) ~ exp(T /T) on insulating side



Class of relevant materials

Amorphously disordered (no structural grains)
Low carrier density at helium temperatures
(around 10%' cm™ or even less .)

Examples:

amorphous InOx TiN thin films

Possibly similar:
NbN_ B- doped diamond and B-doped Si

Li ZrNaCl (layered crystalline insulator
with carriers due to Li doping)

Bosonic v/s Fermionic scenario ?

None of them is able to describe InOx data:
Both scenaria are ruled out by STM data in SC state




G, narmalized

G, normalized

 SC side: local tunneling conductance

Spectral signature of localized Cooper pairs in disordered superconductors.

Benjamin Sacépd ! * Thomas Dubouchet,! Clande Chapelier,! Mare
Sanquer,! Macz Ovadia.® Dan Shahar,? Mikhail Feigel'man.® and Lev Inffed®

151"
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[+ 4] e
I

f=l=]
1

.-71

Nature Physics 7, 239 (2011)

1.5

G(V)

The spectral gap appears much before

(with T decrease) than superconducting
coherence does

Coherence peaks in the DoS appear together

with resistance vanishing while T drops
Distribution of coherence peaks heights

is very broad near SIT



Theoretical model (3D)

Simplest BCS attraction model,
but for critical (or weakly
localized) electron eigenstates

— H - 3 hy t
H=H-g[dTW'W'WW
of free electrons in random potential

W =7 Cj wj (r) Basis of exact eigenfunctions

M. Ma and P. Lee (1985): S-l transition at 6Lz TC
We will see find that SC state is compatible with 6 >> T

0 =1 L3IOC



Mean-Field Eq. for T_

Alr) = [I{T{r, A )d (9)

where kernel K is equal to

A Z tanh 55 + tanh% |

Kr(r,r') = E 616 il g ()l (o )b () (10]

Standard averaging over space A(r) = A leads to " Anderson theorem™ result: totally
incorrect in the present situation.
The reason: critical eigenstates (r) are strongly correlated in real 3D space, they fill

some small submanifold of the whole space only.



In fact one should define T, as the divergence temperature of the Cooper ladder
. =1
€= (1 . .ﬁ:)

Thus averaging procedure should be applied to C instead of K
We expand C in powers of A and average over disorder realizations. Keeping main

sequence of resulting diagramms only, we come to the following equation for determination
of T,:

®(¢) = % f o m“:f‘irf D wge - eraier (11)

Mw)=VM,; = f‘t.i'f{rjltci'?{r}d“r for |§—&|=w



Mw) = VM;; = /It:"f[f‘jltl'?{r]liid?‘ for |§—§|=w

Fractality of wavefunctions
at the mobility edge E_=E_

For critical eigenstates

Lige = o0
one finds
" )
g (ﬁ)
where
D
T d
is a measure of fractality
Usunal "dirty superconductor™:
Mw) =1 ¥=10

3D Anderson model: y = 0.57

IPR: M = /|L *dr

(M) ~ 3¢~ (d=d2) [ —d2

E[] — 1/1&’[]{’?3

d =1.3 in 3D

2

[ is the short-scale
cut-off length
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FIG. 2: (Color online) Correlation function M(w) for 3DAM
with Guassian disorder and lattice sizes L = 10, 14, 20 at the
mohbility edge £ = 5.5 (red, blue and black points) and at
the energy E = 8 inside localized band (green points). Inset
shows « values for L = 10.12.14.16.20.



Modified BCS-type mean-field
approximation for critical temperature T_

A

NG / Aoy (OM(E - A

0 = ni = & tanh(&; /2T)

L]
hl

T\, ~) = EoAY 7 C(7)

i

* Forsmall )\ this T is higher than BCS value !

{!Tg

7

The same result was later obtained by Burmistrov , Gorny and Mirlin
via RG approach for 2D system

":r':].—



Superconductivity at the
Mobility Edge: major features

- Critical temperature T_ is well-defined

through the whole system in spite of strong
A(r) fluctuations

- Local DoS strongly fluctuates in real space; it
results in asymmetric tunnel conductance
G(V,r) # G(-V,r)

- Both thermal (Gi) and mesoscopic (Gid)

fluctuational parameters of the GL
functional are of order unity



B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D.
Shahar, M. Feigel'man, and L. Ioffe, Nature Physics, 7, 239 (2011)
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FIG. 4: Onset of the superconducting phase coherence. a, Local onset temperature of the
coherence peaks, Tpeur(r), normalized to T,., versus the ratio 2A(r)/kpT. where A(r) is the low
temperature spectral gap. For comparison, we added the point T.,1(r)/T: = 1 corresponding to
the theoretical BCS ratio 2A/kpT, = 3.52. b, Thermal evolution of the coherence peak height,
R (for definition see text), extracted from data of Fig. 1c and of the resistivity p of low disorder
sample. This plot evidences the coincidence between the appearance of the zero-resistance super-

conducting state at T, with macroscopic phase coherence and the onset of the coherence peaks at

Tpeak .



Superconductive state
with a pseudogap

Wave-functions with E near EF are localized,
Localization length L _ Is long,

”e'-3| >> 1

oC



Local pairing energy

Parity gap in ultrasmall grains
K. Matveev and A. Larkin 1997

A < §: * No many-body correlations

Ap=3M A=A/ -Mogleo/d). AP

Correlations between pairs of electrons
localized in the same “orbital”

)
5
21113




Parity gap for Anderson-localized
elgenstates

The increase of thermodynamic potential €2 due to ad-
dition of odd electron to the ground-state is

(Sﬂcue — £ﬂ1—|—1 — €m+1 — gm—l-l - gm—l—l —

g y y—1
_ﬁlr*m 1—|_OU/ )
§=¢-4M 2=

Energy of two single-particle excitations after depairing:

Z&P — E*m-l—l — sm + g*ﬁ'fﬂl — %(ﬁ’fﬂl =+ ﬂ’irﬂl—I-l) - O(V_l)

(M) = 3¢-(d=d2) [~

ln:u: 3

3 3\ E.— Ep\**®
Ap=_gf 3L, /61" =""F ¢
P Eg l-r Eoc‘f 1" 2 0 ( EEI )

AP - activation gap in transport
d =1.3 in 3D

2



Ty (K)

Activation energy T, from

D.Shahar & Z. Ovadyahu (1992) on
amorphous InOx and fit to the theory

Ty =A(l —o/o.)"", A~05\E;

10

Example of consistent choice:

A. =0.05 E =400K

T Y TRy e ——— No reasonable fitis possible
o~(kgl) (au) with D=3 instead of d,



Development of superconducting
correlations between localized pairs:
equation for T_

A©) =3 [ don(@)M(E - A0

—

i = Nii = &, Ltanh( & /2T

L]
hl

Correlation function

_\J(u*_l:r_\-f,-J:/t-;ﬁ[r-jt-_if.:r-;m'*r for | —&|=w

should now be determined for localized states



Correlation function M(w)

No saturation at oo<6L ;
M(w) ~In* (3, / w)

(Cuevas & Kravtsov PRB,2007)
Superconductivity with

T_<<9, Ispossible
only with weak coupling !

NC(w)

10'F
This region was not noticed
30 Gauss, W=4, Etrsb.ﬁ. “":.:'3-5 p rev | ous I y

10° 10° 10" 10* 10" 10" Here “local gap”
exceeds SC gap :

1 Ay
FIG. 2: (Color online) Correlation function M{w) for 3DAM Ap = o Dfr{ﬂﬂ'r* ( Ay )

with Guassian disorder and lattice sizes L = 10, 14, 20 at the
mohility edge E = 5.5 (red, blue and black points) and at
the energy E' = 8 inside localized band (green points). Inset
shows « values for L = 10.12.14.16.20.
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TC Versus

3D AN, L=20, W=4.0,
@, = 0.5

0.09 | g=0.08/v{E )=1.7 fixed -

'F‘.l
0.06 ./ ]\ 4
A
0.03 - 0/ \
Sk
ﬁr,=|:g."2}F2'y"

ﬂ[’]ﬂ l—_". 1 ! 1 [
0 2 i B 8 10

FIG. 25: (Color online) Virial expansion results for T. (red
points) and typical pseudogap Ap (black) as functions of Er.
The model with fixed value of the attraction coupling constant
g = 1.7 was used; pairing susceptibilities were calculated using
equations derived in Appendix B.

Pseudogap

wt £ '

10° . . .
3D AM, [=20, W=4.0,
{"'u = GE
g=0.08/v(E )=1.7 fixed
107 F -
JT::TL
A=(gi2
107 -
)
L
10 B i i i i
0 2 4 B B 10

FIG. 26: (Color online) Virial results for T, (red points), typi-
cal psendogap A p (black) and the corresponding level spacing
dp (green), as functions of Er on semi-logarithmic scale.

Superconductive transition exists even at b >> T



Contribution of single-electron states
Is suppressed by pseudogap A >> T

Psecdo Spin represewtefiou
(]

+
H Zzysp 32 ST+

t _ ot at 5 Py
S‘,~ QMQH Sﬁ a,,,a,,‘ +Z(g )
4 -&

B: b(ocfm! Shedes

HB“ acts oh EVeh SCC*M‘: Mfw = ?V M(} I‘D
7y s-fd-es (U'Uc-‘l QAre D87 4"“09 volume

2~ gilled o empty

“Pseudospin”
approximation

/ ~ vl Lfm Effective number of interacting
| “neighbours”



Qualitative features of
“Pseudogaped
Superconductivity”:

STM DoS evolution with T

Double-peak structure in point-
contact conductance

Nonconservation of the full spectral
welght across T.

AU

T A T

c P




G, narmalized

G, normalized

' SC side: local tunneling conductance

Spectral signature of localized Cooper pairs in disordered superconductors.

Benjamin Sacépd ! * Thomas Dubouchet,! Clande Chapelier,! Mare
Sanquer,! Macz Ovadia.® Dan Shahar,? Mikhail Feigel'man.® and Lev Inffed®

151"

e
[+ 4] e
I

f=l=]
1

.-71

Nature Physics 7, 239 (2011)

1.5

G(V)

The spectral gap appears much before

(with T decrease) than superconducting
coherence does

Coherence peaks in the DoS appear together

with resistance vanishing while T drops
Distribution of coherence peaks heights

is very broad near SIT



GIVL ol sdes

GiVj[au]

Local tunneling conductance-2
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Peak heights
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dl/dV [a.u.]

Andreev point-contact spectroscopy

T. Dubouchet,!** C. Chapelier,! M. Sanquer,! B. Sacépé,®* Maoz Ovadia,® and Dan Shahar®
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Vbias [mV]
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. . b 3
Pair tunnelling

does not require 25

to pay depairing, > o\

energy AP
2eV, = 2A

dl/dV [a.u

1.5

eV, = A+ A,

T.Dubouchet,
thesis, Grenoble
(11 Oct. 2010)

2 -1 0
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S-I-T: Third Scenario

* Bosonic mechanism: preformed Cooper pairs + competition
Josephson v/s Coulomb - SIT in arrays
* Fermionic mechanism: suppressed Cooper attraction, no paring

-SMT

* Pseudospin mechanism: individually localized pairs
- S| T inamorphous media

SIT occurs at small Z and lead to paired insulator K =2

H=2Y &si—> M;(sist+s!sY)
i L]

Cayley tree model is solved

(M.F.,L.Ioffe & M.Mezard
Phys. Rev.B 82, 184534 (2010) )



MODEL SOLUTION 1: CAVITY EQUATIONS.

Main idea: cavity equations.
Introduce effective field that simulates the effect of spins at higher levels:

H=-

0% Jr"‘u‘-‘

H=-{0,-> ({0, +0,0; +h,c;) Choose h, so that (r:r;‘)H =<LTI)D

=00 i
.f

Roughly - this approximation 1s sufficient to get the transition temperature to O(1/K):

h \/: ‘+h C
o= E 5 k. Tanh ¥Y=F k.J
J \/ﬂr=J’ +h

If averaged over uniform distribution of £ we get usual BCS-like equation:

NE +I
Tanh[ ] that tells us that T, =0 for any g>0.

T

F?gjm



MODEL SOLUTION 2: EQUATION FORT...

To find T. we need to find when infinitely small field applied at the boundary leads to
large field in the center:

Tanh[Z .../ T
hy=2Zh, Z= b l—[ g [ k.ilk] ]
_ aeny ¥ K

Sk k]

That is whether Z=exp(fN) with =0 ("magnet” or “superconductor” ) or f<0 (paramagnet)?

MNon-trivial physics is due to the fact that Z is not necessarily self-averaging quantity!
Consider higher moments:

g Tﬂlﬂl[;}r:: T] | _ 3 K‘l—i‘]g.ﬂ' T."i—l
K i V4K

The moments diverge at T=g/K which becomes higher than ‘average’ T.=exp(-1/g).




Distribution function for the
order parameter

Linear recursion (IT'=T))

B = (g/K) Y (Bi/&) tanh(38) | . Bm
; P(B)=
A Bltw
Laplace transform satisfies the equation:
Pls) = [ / : i P (S g tanh 5\ 1" Diverging 1st moment
o K¢

Solution in the RBS phase: P(s) =1 - A4s® with z < 1

_ _ [ dE [ g tanh(GE)\ T _ .
_ s, T=0 e .

1 e , ,l: xX=m = 1—eg.
ﬁt&nhi P In (itanh 'j"fj = 0

IR EK )



Vicinity of the 0.01l RS
Quantum Critical |
Point 0.001}

K 1/ e HSB
T.(K) = 9y (f - 1) 107}

Je = €. <<1 J ST
0.00  0.05 0.10  0.15

i

3
0.20 0.25

FIG. 2: Main panel: phase diagram in plane (g, 7" for K = 4. Full hnes show the critical tem-
perature as function of g. The low temperature phase 15 superconducting, the ligh temperature
phase 13 insulating. The top curve 15 the naive mean-field prediction which gives the correct result
above Thep = L0207, The bottom curve 18 the result of the correct analysiz on the Bethe lattice,
mcluding the HSE effects in the DP problem, which occur at temperatures 7' << Trep. The msert
shows the phase diagram as function of K for g = 0.129. For thus value of g the replica svmmetnce
solution gives K-mdependent transition temperature 7. = 0.001; this value roughly correspond
to the experimental situation in disordered In) films (zee section VI). The prediction of rephea
symmetric theory is correct for K = K58 ~ 6. For smaller K the transition temperature starts
to drop. the quantum critical pomt corresponds to K. ~ 2.2, Notice that in a numencally wide

regime the replica svmmetry 13 broken but the effect on transition temperature 15 small.



Order parameter:

scaling near transition

e
§ B, oz | 2
B, =— E tanh J4/ By + £ .
§ K VB . g 7>

K
fe=1

m 9 B 2./ "
B! _Z(E Bro tanh 7 Bf-l—ﬁ)

Typical value near the critical point:

By ~ e t/e8:) ey

o
(g/ge)™ — 1




CHECHK FOR IMPORTANCE OF SUBLEADING
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Insulating phase: continuous
v/s discrete spectrum ?

Consider perturbation expansion over M; in H below:

H=2) &si—) My(sist +s!sY)
i i

Within convergence region the many-body spectrum is
qualitatively similar to the spectrum of independent spins

J

No thermal distribution, no energy transport,
distant regions “do not talk to each other”



Different definitions for the
fully many-body localized state

1. No level repulsion (Poisson statistics of the full
system spectrum)
2. Local excitations do not decay completely
3. Global time inversion symmetry is not broken
(no dephasing, no irreversibility)
4. No energy transport (zero thermal conductivity)
5. Invariance of the action w.r.t. local time
transformations t -t + o(t,r):

d o(t,r)/dt = € (t,r) - Luttinger’s gravitational
potential



[.evel statistics: Poisson v/s
WD

* Discrete many-body spectrum with zero
level width: Poisson statistics

* Continuous spectrum (extended states) :

Wigner-Dyson ensemble with level
repulsion

V.Oganesyan & D.Huse
Phys. Rev. B 75, 155111 (2007)

Model of interacting fermions
(no-conclusive concerning
sharp phase transition)
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Level statistics of disordered spin-1/2 systems

and materials with localized Cooper pairs

Emilio Cuevas! Mikhail Feigel'manzﬁ, Lev loffe%> & Marc Mezard®

0 <rp,=min(d,,d,_1)/ max(d,,dn_1) < 1

a L T
L -
0.52[ WD 5. I—j'
- _._-—'— —i
0.48
=
0.44 |
0.40 | Pois
0.0 0.1 0.2 0.0 0.1 0.2 03 0.0 0.1 0.2 0.3
J S o

refers to the sector with 5, =0 tor the model (1) with /=0, defined on a =3 random graph with bandwidth W=1. Panel a shows the statistics of the
low-energy excitations in the energy interval (Egg, Eg5+’|.5). Data points are shown for system sizes N=14 (black dots), N=16 (red), N=18 (blue), N=2
(green) and N=22 (violet). The critical value of the coupling /¥ =0.095:+0.003 is determined via a crossing point analysis. Panel b shows similar resul
for intermediate excitation energies, (Egs+1.5, Egs+2.5), leading to the critical point 1¥=0.06620.002. Panel ¢ corresponds to high energies, close to'
centre of the many-body spectrum, with the critical point J.” =0.061£0.002. Each data point represents the average over N;=2,000, 200,100 and 60
disorder realizations for N¢=14,16, 18 and 20, respectively. A large (exponential) increase in the number of states implies that lareer samples require
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Phase diagram (for J**=0, T=0)

1.5

1.0

0.5

BC| - ‘ |

Weak insulator

Strong insulator

| ""'"--..._

1 ]
L

I v\, %y _—

0.0 —

0.00

005 010 045 020 0.25
g

10.2

0.1

0.0

Figure 3 | Phase diagram and finite-size effects. Phase diagram for the
model (1) with £=0 as a function of the interaction constant g. The full
lines show the predictions of the analytical study of the model (1) for the
critical temperature (right vertical axis) and the threshold energy, &, (left
axis) of spin-flip excitations in infinite random graphs with Z =3 neighbours.
The vertical ovals show the values of the critical coupling constant that
correspond to a transition between different types of spectra for different
energies £ in finite random graphs of small size (N=16-20) as determined
by direct numerical simulations. The uppermost oval shows the transition
at the many-body band centre (corresponding to £31) that sets a lower
bound for the critical g(E). The thick dashed line shows the position of the
spectral threshold for single-spin excitations with energy £ adjusted by
finite-size effects, as explained in the main text and in the Methods section.
The small circles show the typical energy of the single-spin excitations, e(E),
that gives the main contribution to the many body excitations studied in
direct numerical simulations. The good agreement between their position
and expectations (dashed line) confirms the validity of the cavity method>®
that is used to obtain the results in infinite systems. The very small change
in the critical value of the coupling constant between excitations at energy
E=2.0 and the centre of the many-body band implies that all excitations, at
high and low energies, become localized when g<g*.



Expected phase diagram

ajor feature: green and red line
meet at zero energy
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Phase diagram-version 2

Here green and red line do not meet
at zero enerqgy

Do gapless delocalized excitation exist
Energy WITHOUT Long-range order ?

Full localizatian:
Insulator with
Discrete levels

Superconductor
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Temperature-driven localization transition
In presence of J,S7S? interaction

ﬂxr = —EE&,SE — ZJS-
i (1)

v(E)=CNexpla(g)VEN)

2
10}
- 08
06|
04
0.2

Strong insulator

0.0 Lws

Weak insulator

1 PRI R S O

—>
SC

0.00

g ¢ 010 G

020 025
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10.06
10,04
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T

. E XY+ .— — 4
S_ii_ J“.I:-_';I [\Si n':1_i; ‘I_S_i S_;IJ
(i7)

Figure 1] Phase diagram in the temperature-coupling constant plane.
The phase diagram is obtained from the solution of cavity equations for
the model (1) with Z=K+1=3 and confirmed by numerical simulations.
Blue line shows the dependence of the critical ordering temperature T-(g)
on the coupling constant at g>g... The strength of the s%s? interaction is
1#=0.4, non-zero 7 results in a g-dependent line (purple) separating weak
and strong insulators; in the absence of s?s? interaction, this line becomes
vertical. In the weak insulator, excitations at sufficiently high energies can
decay even at zero temperature (the corresponding energy threshold is
shown for /#2=0 by the dashed red line). A non-zero temperature results
in non-zero relaxation of all excitations, even the ones of lowest energy.
In contrast, in the strong insulator, no excitation with intensive energy
can decay. As the interaction constant g is decreased, the temperature
separating these phases (purple line) goes to infinity at g=g,. At smaller



M. Ovadia'2, D. Kalok', I. Tamir', S. Mitra®, B. Sacépé’** and D. Shahar'*

Evidence for a Finite Temperature Insulator
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Conclusions - part 2

New type of S-I phase transition is described

Pairing on nearly-critical states produces fractal superconductivity
with relatively high T, but small n_

Pairing of electrons on localized states leads to hard gap and
Arrhenius resistivity for 1e transport

Pseudogap behaviour is generic near
S-I transition, with “insulating gap” above T,

On insulating side activation of pair transport is due to
ManyBodyLocalization threshold

Superconductivity is extremely inhomogeneous near SIT,
for two different reasons:
1) fractality, ii) lack of self-averaging



Conclusions for 1+ 2

1) We don't know how to take into account
both Coulomb effects in the Cooper channel
and Localization/Fractality effects

It seems that both are relvant for S-I-T In

TIN and probably in some other materials.

2) The nature and even the condition for existence
of an intermediate “quatum metal” state is unknown
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