

Anderson Localization: Multifractality, Symmetries, Topologies, and Interactions

Alexander D. Mirlin Karlsruhe Institute of Technology

Moscow Institute of Physics and Technology, 8 October 2014

Plan

- Anderson localization: basic properties, field theory
- Wave function multifractality
- Symmetries of disordered systems
- Manifestations of topology in localization theory
- Influence of electron-electron interaction

Anderson localization

Philip W. Anderson

1958 "Absence of diffusion in certain random lattices"

sufficiently strong disorder \longrightarrow quantum localization

- \longrightarrow eigenstates exponentially localized, no diffusion
- \longrightarrow Anderson insulator

Nobel Prize 1977

Anderson Localization: Extended and localized wave functions

Schrödinger equation in a random potential

$$[-\hbar^2rac{\Delta}{2m}+U({
m r})]\psi=E\psi$$

Precursor of strong Anderson localization: Weak localization

Cooperon loop (interference of timereversed paths)

Weak localization in experiment: Magnetoresistance

Li et al. (Savchenko group), PRL'03

2D electron gas in GaAs heterostructure

low field: weak localization

Gorbachev et al. (Savchenko group), PRL'07

weak localization in bilayer graphene

Anderson Insulators & Metals

Connection with scaling theory of critical phenomena: Thouless '74; Wegner '76 Scaling theory of localization: Abrahams, Anderson, Licciardello, Ramakrishnan '79 scaling variable: dimensionless conductance $g = G/(e^2/h)$ RG for field theory (σ -model) Wegner '79

quasi-1D, 2D : all states are localized

review: Evers, ADM, Rev. Mod. Phys. 80, 1355 (2008)

Field theory: non-linear σ -model

action:

$$S[Q] = rac{\pi
u}{4} \int d^d \mathrm{r} ~ \mathrm{Tr} \left[-D(
abla Q)^2 - 2i \omega \Lambda Q
ight], \qquad Q^2(\mathrm{r}) = 1$$

Wegner'79

 σ -model manifold:

e.g., "unitary" symmetry class (broken time-reversal symmetry):

- fermionic replicas: $\mathrm{U}(2n)/\mathrm{U}(n) imes \mathrm{U}(n) \ , \qquad n \to 0$ "sphere"
- bosonic replicas: $\mathrm{U}(n,n)/\mathrm{U}(n) imes \mathrm{U}(n) \;, \qquad n o 0$ "hyperboloid"

• supersymmetry (Efetov'83): $U(1,1|2)/U(1|1) \times U(1|1)$

{"sphere" \times "hyperboloid"} "dressed" by anticommuting variables

• with electron-electron interaction: Finkelstein'83

σ model: Perturbative treatment

For comparison, consider ferromagnet model in external magnetic field:

$$H[\mathrm{S}] = \int \mathrm{d}^d \mathrm{r} \, \left[rac{\kappa}{2} (
abla \mathrm{S}(\mathrm{r}))^2 - \mathrm{BS}(\mathrm{r})
ight] \, , \qquad \qquad \mathrm{S}^2(\mathrm{r}) = 1$$

n-component vector σ -model

Target manifold:

sphere $S^{n-1} = O(n)/O(n-1)$

Independent degrees of freedom: transverse part ${
m S}_{ot}$; $S_1 = (1-{
m S}_{ot}^2)^{1/2}$

$$H[\mathrm{S}_{\perp}] = rac{1}{2} \int \mathrm{d}^d \mathrm{r} \, \left[\kappa [
abla \mathrm{S}_{\perp}(\mathrm{r})]^2 + B \mathrm{S}^2_{\perp}(\mathrm{r}) + O(\mathrm{S}^4_{\perp}(\mathrm{r}))
ight]$$

Ferromagnetic phase: broken symmetry, Goldstone modes – spin waves $\langle {
m S}_{\perp} {
m S}_{\perp}
angle_q \propto rac{1}{\kappa {
m q}^2 + B}$

Similarly

$$S[Q] = rac{\pi
u}{4} \int \mathrm{d}^d \mathrm{r} \operatorname{Str} [D(
abla Q_{ot})^2 - i \omega Q_{ot}^2 + O(Q_{ot}^3)]$$

theory of "interacting" diffusion modes; Goldstone mode: diffusion propagator

$$\langle Q_\perp Q_\perp
angle_{q,\omega} \sim rac{1}{\pi
u (D {
m q}^2 - i \omega)}$$

Quasi-1D geometry: Exact solution of the σ -model

quasi-1D geometry (many-channel wire) \longrightarrow 1D σ -model

- \rightarrow diffusion on σ -model curved space
- Localization length Efetov, Larkin '83
- Exact solution for the statistics of eigenfunctions Fyodorov, ADM '92-94
- Exact $\langle g \rangle(L/\xi)$ and $\operatorname{var}(g)(L/\xi)$

1.5

1.0

0.5

0.0

<g>L/ἕ

Zirnbauer, ADM, Müller-Groeling '92-94

orthogonal (full), unitary (dashed), symplectic (dot-dashed)

From weak to strong localization of electrons in wires

Gershenson et al, PRL 97

Anderson localization of atomic Bose-Einstein condensate in 1D

Billy et al (Aspect group), Nature 2008

3D Anderson localization transition in Si:P

Stupp et al, PRL'93; Wafenschmidt et al, PRL'97

0.2

(a)

ο

(b)

3

0.6

3D Anderson localization in atomic "kicked rotor"

kicked rotor
$$H = \frac{p^2}{2} + K \cos x [1 + \epsilon \cos \omega_2 t \cos \omega_3 t] \sum_n \delta(t - 2\pi n/\omega_1)$$

Anderson localization in momentum space. Three frequencies mimic 3D !
Experimental realization: cesium atoms exposed to a pulsed laser beam.

Chabé et al, PRL'08

Multifractality at the Anderson transition

 $P_q = \int d^d r |\psi({
m r})|^{2{
m q}}$ inverse participation ratio

$$\langle P_q
angle \sim \left\{ egin{array}{c} L^0 \ L^{- au_q} \ L^{-d(q-1)} \end{array}
ight.$$

insulator critical metal

 $au_q = d(q-1) + \Delta_q \equiv D_q(q-1)$ multifractality normal anomalous $au_q \longrightarrow$ Legendre transformation

 \longrightarrow singularity spectrum $f(\alpha)$

wave function statistics:

$$\mathcal{P}(\ln|\psi^2|) \sim L^{-d+f(\ln|\psi^2|/\ln L)}$$

 $L^{f(lpha)}$ – measure of the set of points where $|\psi|^2 \sim L^{-lpha}$

Dimensionality dependence of multifractality

Analytics $(2 + \epsilon, \text{ one-loop})$ and numerics

$$au_q = (q-1)d - q(q-1)\epsilon + O(\epsilon^4)$$
 $f(lpha) = d - (d+\epsilon-lpha)^2/4\epsilon + O(\epsilon^4)$

 $egin{aligned} d &= 4 \ (ext{full}) \ d &= 3 \ (ext{dashed}) \ d &= 2 + \epsilon, \ \epsilon &= 0.2 \ (ext{dotted}) \ d &= 2 + \epsilon, \ \epsilon &= 0.01 \ (ext{dot-dashed}) \end{aligned}$

Inset: d = 3 (dashed) vs. $d = 2 + \epsilon$, $\epsilon = 1$ (full)

Mildenberger, Evers, ADM '02

Multifractality at the Quantum Hall transition

Symmetry of multifractal spectra ADM, Fyodorov, Mildenberger, Evers '06 LDOS distribution in σ -model + universality \rightarrow exact symmetry of the multifractal spectrum:

 $\boldsymbol{\alpha}$

$$\Delta_q = \Delta_{1-q} \qquad \qquad f(2d-lpha) = f(lpha) + d -$$

ightarrow probabilities of unusually large and unusually small $|\psi^2(r)|$ are related !

Multifractality: Generalizations

• Symmetry of multifractal spectra as a consequence of invariance of the σ model correlation functions with respect to Weyl group of the σ model target space;

generalization to unconventional symmetry classes

Gruzberg, Ludwig, ADM, Zirnbauer PRL'11

• generalization on full set of composite operators,

i.e. also on subleading ones.

Gruzberg, ADM, Zirnbauer, PRB'13

Important example:

$$A_2 = V^2 |\psi_1(r_1)\psi_2(r_2) - \psi_1(r_2)\psi_2(r_1)|^2$$

 \leftrightarrow Hartree-Fock matrix element of e-e interaction

scaling:
$$\langle A_2^q \rangle \propto L^{-\Delta_q^{(2)}}$$
 symmetry: $\Delta_q^{(2)} = \Delta_{2-q}^{(2)}$

Interaction scaling at criticality

Burmistrov, Bera, Evers, Gornyi, ADM, Annals Phys. 326, 1457 (2011)

→ Temperature scaling at quantum Hall and metal-insulator transitions with short-range interaction

Multifractal spectrum of A_2 at quantum Hall transition

Numerical data: Bera, Evers, unpublished

Confirms the symmetry $q \leftrightarrow 2-q$

Multifractality: Experiment I

Local DOS flucutuations near metal-insulator transition in $Ga_{1-x}Mn_xAs$

Richardella,...,Yazdani, Science '10

Multifractality: Experiment II

Ultrasound speckle in a system of randomly packed Al beads

Faez, Strybulevich, Page, Lagendijk, van Tiggelen, PRL'09

0.0

-0.5

-1.0

-1.5

-2.0

 $\Delta_q, \; \Delta_{I^{-q}}$

Multifractality: Experiment III

Localization of light in an array of dielectric nano-needles

Mascheck et al, Nature Photonics '12

Disordered electronic systems: Symmetry classification

Altland, Zirnbauer '97

Conventional (Wigner-Dyson) classes								
	\mathbf{T}	spin rot.	\mathbf{symbol}					
GOE	+	+	AI					
GUE	—	+/-	\mathbf{A}					
GSE	+	—	AII					

$\begin{tabular}{|c|c|c|} \hline Chiral classes \\ \hline T spin rot. symbol \\ \hline ChOE + + BDI \\ \hline ChUE - +/- AIII \\ \hline ChSE + - CII \\ \hline \end{tabular}$

$$H=\left(egin{array}{cc} \mathbf{0} & \mathbf{t} \ \mathbf{t^{\dagger}} & \mathbf{0} \end{array}
ight)$$

 $H = \left(egin{array}{cc} \mathbf{h} & \mathbf{\Delta} \ -\mathbf{\Delta}^* & -\mathbf{h}^T \end{array}
ight)$

Bogoliubov-de Gennes classes

\mathbf{T}	spin rot.	symbol
+	+	CI
—	+	\mathbf{C}
+	—	DIII
—	—	D

Disordered electronic systems: Symmetry classification

Ham.	\mathbf{RMT}	Т	\mathbf{S}	compact	non-compact	$\sigma ext{-model}$	$\sigma ext{-model compact}$			
class				symmetric space	symmetric space	$\mathbf{B} \mathbf{F}$	$\text{sector} \mathcal{M}_F$			
Wigne	Wigner-Dyson classes									
Α	GUE	—	±	$\mathrm{U}(N)$	$\mathrm{GL}(N,\mathbb{C})/\mathrm{U}(N)$	AIII AIII	$\mathrm{U}(2n)/\mathrm{U}(n)\! imes\!\mathrm{U}(n)$			
AI	GOE	+	+	$\mathrm{U}(N)/\mathrm{O}(N)$	$\operatorname{GL}(N,\mathbb{R})/\operatorname{O}(N)$	BDI CII	$\mathrm{Sp}(4n)/\mathrm{Sp}(2n)\! imes\!\mathrm{Sp}(2n)$			
AII	GSE	+	_	${ m U}(2N)/{ m Sp}(2N)$	$\mathrm{U}^*(2N)/\mathrm{Sp}(2N)$	CII BDI	$\mathrm{O}(2n)/\mathrm{O}(n)\! imes\!\mathrm{O}(n)$			
chiral	chiral classes									
AIII	chGUE	—	±	$\mathrm{U}(p+q)/\mathrm{U}(p)\! imes\!\mathrm{U}(q)$	$\mathrm{U}(p,q)/\mathrm{U}(p)\! imes\!\mathrm{U}(q)$	$\mathbf{A} \mathbf{A}$	$\mathrm{U}(n)$			
BDI	chGOE	+	+	$\mathrm{SO}(p+q)/\mathrm{SO}(p)\! imes\!\mathrm{SO}(q)$	$\mathrm{SO}(p,q)/\mathrm{SO}(p)\! imes\!\mathrm{SO}(q)$	AI AII	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$			
CII	chGSE	+	_	$\mathrm{Sp}(2p+2q)/\mathrm{Sp}(2p)\! imes\!\mathrm{Sp}(2q)$	$\mathrm{Sp}(2p,2q)/\mathrm{Sp}(2p)\! imes\!\mathrm{Sp}(2q)$	$\mathbf{AII} \mathbf{AI}$	$\mathrm{U}(n)/\mathrm{O}(n)$			
Bogoliubov - de Gennes classes										
С			+	$\operatorname{Sp}(2N)$	$\mathrm{Sp}(2N,\mathbb{C})/\mathrm{Sp}(2N)$	DIII CI	${ m Sp}(2n)/{ m U}(n)$			

C	- +	$\operatorname{Sp}(2N)$	$\mathrm{Sp}(2N,\mathbb{C})/\mathrm{Sp}(2N)$	DIII CI	$\mathrm{Sp}(2n)/\mathrm{U}(n)$
CI	+ +	$\mathrm{Sp}(2N)/\mathrm{U}(N)$	$\mathrm{Sp}(2N,\mathbb{R})/\mathrm{U}(N)$	DC	$\operatorname{Sp}(2n)$
BD		$\mathrm{SO}(N)$	$\mathrm{SO}(N,\mathbb{C})/\mathrm{SO}(N)$	CI DIII	${ m O}(2n)/{ m U}(n)$
DIII	+ -	${ m SO}(2N)/{ m U}(N)$	${ m SO}^*(2N)/{ m U}(N)$	CD	$\mathrm{O}(n)$

Role of symmetry: 2D systems of Wigner-Dyson classes

Orthogonal and Unitary: localization; parametrically different localization length: $\xi_{\rm U} \gg \xi_{\rm O}$ Symplectic: metal-insulator transition

Usual realization of Sp class: spin-orbit interaction

Symmetry alone is not always sufficient to characterize the system. There may be also a non-trivial topology.

It may protect the system from localization.

Integer quantum Hall effect

 σ_{xx}

von Klitzing '80 ; Nobel Prize '85

 $\longrightarrow \mathbb{Z}$ topological insulator

0.5

IQHE flow diagram

 $2 \sigma_{xv}(e^2/h)$

1.5

Periodic table of Topological Insulators

	Symmetry classes					Topological insulators			
p	H_p	R_p	$old S_p$	$\pi_0(R_p)$	d=1	d=2	d=3	d=4	
0	AI	BDI	CII	Z	0	0	0	\mathbb{Z}	
1	BDI	\mathbf{BD}	AII	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
2	BD	DIII	DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
3	DIII	AII	BD	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
4	AII	\mathbf{CII}	BDI	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
5	\mathbf{CII}	\mathbf{C}	\mathbf{AI}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_{2}	
6	\mathbf{C}	\mathbf{CI}	\mathbf{CI}	0	0	\mathbb{Z}	0	\mathbb{Z}_2	
7	\mathbf{CI}	\mathbf{AI}	\mathbf{C}	0	0	0	\mathbb{Z}	0	
0'	A	AIII	AIII	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
1′	AIII	\mathbf{A}	\mathbf{A}	0	\mathbb{Z}	0	\mathbb{Z}	0	

 H_p – symmetry class of Hamiltonians

 R_p – sym. class of classifying space (of Hamiltonians with eigenvalues $\rightarrow \pm 1$) S_p – symmetry class of compact sector of σ -model manifold

Kitaev'09; Schnyder, Ryu, Furusaki, Ludwig'09; Ostrovsky, Gornyi, ADM'10

2D massless Dirac fermions

Graphene Geim, Novoselov'04 Nobel Prize'10

Surface of 3D topological insulators BiSb, BiSe, BiTe Hasan group '08

 σ -model field theory with a topological term

Ostrovsky, Gornyi, ADM '07

- Graphene: long-range disorder (no valley mixing)
- Surface states of 3D TI: no restriction on disorder range

Role of symmetry and topology: Graphene at the Dirac point Ostrovsky et al, PRL'10; Gattenlöhner et al, PRL'14

Models of scatterers:

- scalar impurity: smooth on atomic scale (no valley mixing)
- resonant scalar impurity: diverging scattering length, quasibound state at the Dirac point
- adatom: on-site potential (valley mixing)
- vacancy: infinitely strong on-site potential

Resonant scalar impurities $(l_s = \infty)$

Ostrovsky, Titov, Bera, Gornyi, ADM, PRL (2010)

• flow towards supermetal $\sigma \to \infty$

• agreement with σ model RG

Scalar impurities (finite l_s , random sign)

Large $l_s \longrightarrow$ Symmetry breaking pattern: DIII (with WZ term) \longrightarrow AII (with $\mathbb{Z}_2 \theta$ -term)

Vacancies

symmetry class BDI (chiral orthogonal)

No localization, $\sigma \to \text{const} \simeq \frac{4}{\pi} \frac{e^2}{h}$

Adatoms (finite l_a , random sign)

Large $l_a \longrightarrow$ Symmetry breaking pattern: BDI \longrightarrow AI Vacancies $(l_a \rightarrow \infty)$: finite conductivity $\sigma \simeq \frac{4}{\pi} \frac{e^2}{h}$ for $L \rightarrow \infty$ Localization length ξ – non-monotonous function of l_a

Scalar impurities in magnetic field B

Ultimate fixed points: Quantum Hall criticality (random sign of impurity potentials) and localization (fixed sign)

Scalar impurities in magnetic field B

Ultimate fixed points: Quantum Hall criticality (random sign of impurity potentials) and localization (fixed sign)

Vertical bars: mesoscopic fluctuations

Graphene: Experiments

Geim-Novoselov and Kim groups

Topological terms explain unconventional properties of high-quality graphene samples:

• absence of localization at Dirac point down to very low temperatures (30 mK), although conductivity $\simeq e^2/h$ per spin per valley

• anomalous QHE: $\sigma_{xy} = (2n + 1) \times 2e^2/h$; QHE transition at n = 0 (Dirac point), i.e. at $\sigma_{xy} = 0$ **Electron-electron interaction**

E-e interaction can be incorporated within the same general theoretical framework (σ model);

in some cases essentially modifies localization properties

MIT in a 2D gas with strong interaction

Kravchenko et al '94, ...

Finkelstein '83; Punnoose, Finkelstein, '02-05 (number of valleys $N \gg 1$; in practice, N = 2 sufficient)

Localization behavior in 2D Symplectic class: Effects of symmetry, topology, and Coulomb interaction

Ostrovsky, Gornyi, ADM, PRL '10

Superconductor-Insulator Transition

Haviland, Liu, Goldman, PRL'89 Bi and Pb films

Baturina et al, PRL'07 TiN films

1.0

Enhancement of superconductivity by Anderson localization: interplay of interaction and multifractality

short-range interaction

Feigelman et al, PRL '07, Ann. Phys.'10: near 3D Anderson transition Burmistrov, Gornyi, ADM, PRL '12: 2D films

International group on Localization, Interactions, and Superconductivity

Landau Institute for Theoretical Physics

RSF grant "Superconductor-insulator and metal-insulator transitions in interacting disordered electronic systems" 2014-2016

Workshop 22-25 December 2014, Chernogolovka

Summary

- Anderson localization: basic properties, field theory
- Wave function multifractality
- Symmetries of disordered systems
- Manifestations of topology in localization theory
- Influence of electron-electron interaction

Collaboration:

- F. Evers, A. Mildenberger, I. Gornyi, P. Ostrovsky, I. Protopopov, E. König, S. Bera (Karlsruhe)
- M. Titov (Edinburgh Nijmegen)
- S. Gattenlöhner, W.-R. Hannes (Edinburgh)
- M. Zirnbauer (Köln)
- I. Gruzberg, A. Subramaniam (Chicago)
- Y. Fyodorov (Notthingham London)
- A. Ludwig (Santa Barbara)
- I. Burmistrov (Moscow)